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GENERAL INTRODUCTION 

Metal atom cluster compounds have been defined as those compounds 

containing a group of metal atoms with bonds directly between the metal 

atoms (1). The examination of metal atom cluster compounds has grown 

rapidly in the last 15 years, but the first compounds of this type were 

synthesized many years ago. The initial correct formulation of a metal 

cluster was that of Ta5Cli4*7H20 in 1913 (2). Confirmation of this 

formulation by structure determination occurred in 1950 (3), and the 

presence of metal-metal bonds was deduced from the short metal-metal 

distances in the octahedron of metal atoms. Crystal structures of other 

compounds containing metal-metal bonds had been previously determined. 

For example, in 1935 the tungsten-tungsten distance in K3W2CI9 was found 

to be about 2.5 A (4), and the octahedral cluster of molybdenum atoms was 

found in [Mo6Clg][Cl4(H20)2]'6H20 in 1946 (5). However, in-depth investi­

gations of metal atom cluster compounds were not begun until after the 

1963 crystal structure of Cs3Re3Cli2 (6). This was the first recognized 

instance of multiple metal-metal bonds and emphasized the importance and 

strength of metal-metal bonds. The breadth and depth that the field has 

attained is reflected in the many review articles and books that have been 

recently published (7-9). 

A considerable stimulus for the current interest in transition-metal 

clusters has arisen from the search for new catalysts and a better under­

standing of those catalysts presently employed. The structure and active 

sites of heterogeneous catalysts are frequently unknown, and the use of 

transition-metal clusters to model transition-metal surfaces has been 
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suggested, by Muetterties in particular (10). The question then arises as 

to what size of cluster is needed for satisfactory imitation of the metal 

surface. Theoretical calculations suggest that the cluster compound must 

be very large (11,12). For example, a cluster of nickel atoms must 

contain 15 atoms for the cluster to exhibit metal-like properties and a 

cluster of silver atoms must contain over 30 atoms (13). Some small metal 

cluster compounds, for example Ni4[CN(t-Bu)ly (14), have demonstrated 

catalytic activity. This cluster contains three bridging isocyanide 

ligands (15) which is similar to the multicenter bonding of isocyanides on 

nickel metal surfaces (16). However, the current belief is that 

additional metal clusters must be synthesized and studied before any 

definite trends between metal clusters and metal surfaces can be 

established (17). 

The systematic designed synthesis of poly nuclear transition-metal 

clusters is not yet generally possible. The formation of dinuclear 

compounds from mononuclear compounds and the reaction of metal-metal 

multiple bonds provide some guidance for future work. Mononuclear 

compounds will sometimes couple and form a metal-metal bond if ligand 

dissociation can be induced. This is demonstrated by the loss of PPhg 

from PtCPPhg]^ in refluxing benzene to form di nuclear 

(18). Therefore, one might predict that two clusters could be fused if 

some of their ligands were forced to dissociate. This was demonstrated by 

the loss of methanol from M02CI 4[PPh3]2CMeOH]2 to form {MoCl2CPPh3]2}n 

which, when reacted with PEtg, yielded Mo^ClgCPEtg]^ (19). 
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Metal complexes can be added across metal carbenes or metal carbynes 

to form compounds with metal-metal bonds bridged by carbon (20) (Eqn. 1). 

Cluster size can also be increased by the addition of a metal complex 

across a bridging alkylidyne (Eqn. 2) (21). A similar reaction also 

occurs between 0=Mo(0R)4 and [0R]3Mo=Mo[0R]3. This reaction yields a 

capping o%ygen atom and alkoxy group in the product, MogCwg-OJCwg-ORQCwg-

ORlgCORlg (R = neopentyl) (22). 

A 
M=C + M' > M M' (1) 

The high electron density found at a metal-metal multiple bond is 

similar to that found in metal carbenes or metal carbynes. Attack of a 

molecule on the metal-metal multiple bond frequently severs the bond 

completely; however, it is possible to retain a portion of the bond. A 

conpound that exhibits the latter property is Cp2Mo2[C0]4 (23). For 

example, Curtis and co-workers have shown that acetylenes react readily to 

form dimetallatetrahedrane derivatives. Transition-metal compounds also 

add across a metal-metal multiple bond. The reaction of Cp2Mo2[C0]4 with 

PtCPPhg]^ yields {Cp[C0]2Mo}2Pt[PPh3]2 which is suggested to contain a 

Mo2Pt trimeric cluster (23). The addition of the metal atom of a 

transition-metal compound to a multiple bond in a trimeric cluster to form 

+ M" -> ( 2 )  

I I  
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a tetranuclear cluster has also been demonstrated in the reaction between 

Os3[y-H]2[CO]io and Pt[C2H4]2[PR3] or Pt[C2H4][PR3]2 (Eqn. 3) (24). 

Considering the above reactions as additions to metal-metal multiple 

bonds, one should not be too surprised that dimers containing multiple 

metal bonds react to form larger clusters. One example, Mo^ClgCPRg]^, has 

already been mentioned. The reaction between Mo2[0(i-Pr)]g and CH3COCI 

also couples two molecules of the dimeric compound to produce 

M04CI4[0(i-Pr)]0 which contains a square array of molybdenum atoms. 

However, if CH^COBr is used instead of CH3COCI, the resulting structure 

has a "butterfly" arrangement of metal atoms (25). This metal framework 

is also found in [Bu4N]2Mo4lii which was first prepared by the thermal 

decomposition of Bu4NMo[C0]4l3 (26) but later was synthesized by coupling 

dimeric Mo2[0Ac]4 in methanol by reaction with HI and adding BU4NI (27). 

A fourth structure that arises from the coupling of two dimers is that of 

W4[0Et]i5 (28). This compound is synthesized by heating W2[NMe2]6 with 

ethanol in a hydrocarbon solvent (Eqn. 4). Dinuclear compounds do not 

always couple, however. The reaction of HX with Re2C0Ac]4X2 (X = CI, Br, 

I) at 300°C yields tri nuclear Re3Xg rather than a tetranuclear product 

(29,30). 

M 
/ \  

(3) M==M + M ' 

M M 
2 (4) 

M M 
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The possibility of adding a metal atom from a transition-metal 

compound to a metal cluster containing excess electron density led to the 

investigation reported in this dissertation. Two molybdenum chloride 

cluster compounds, Mo^ClgCPEtg]^ and [Bu4N]2M05Cli3, seemed particularly 

suitable for this work. The bonding in the rectangular Mo/^ unit of 

MogClgCPEtg]^ was assessed as consisting of two triple bonds and two 

single bonds (19). Therefore, it was reasoned that a metal atom might 

capture the extra electrons available by addition across the multiple 

metal bonds and thus form a larger cluster. The square pyramidal 

Mo5C1]^3^" cluster (31) has been shown to be susceptible to the addition of 

metal atoms (32). Our goal was to understand the addition better and 

hopeful ly exploit it. 

The field of metal cluster chemistry has been growing rapidly, but 

there is still much to learn. With continued synthetic endeavors, guided 

by theoretical insight into cluster bonding (33,34), the designed 

synthesis of a specified, desired cluster will become a reality. 

Explanation of Dissertation Format 

The dissertation contains four sections, each of which is written in 

a form suitable for publication in a technical journal. Although 

references cited in the general introduction are found at the end of the 

dissertation, each section contains a listing of reference and notes which 

are cited in that section. The author has conducted all the research 

presented in each section. 
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SECTION I. STRUCTURE AND BONDING OF Mo^ClgCPEtg)* 
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INTRODUCTION 

Several compounds have recently been reported that are synthesized by 

the self-addition of dimers across a metal-metal bond (1,2). The first 

report of this type of reaction involved the synthesis of Mo^ClgCPEtg]^ 

(3). Further investigations into the synthesis of this tetranuclear 

cluster led to its direct synthesis from Mo^COAc]^ (4). With additional 

refinement of the synthetic procedure, we have now found that yields of 

greater than 80% are attainable. A preliminary report of the structure of 

Mo^ClgCPEtg]* was previously communicated (3). The major structural 

features of the cluster were clearly discerned; however, refinement of the 

atom parameters did not proceed satisfactorily. Consequently, in the 

present work new crystals were grown, and a new single crystal x-ray 

diffraction data set was obtained. Results of the redetermined structure 

are presented here in addition to an extended HCfckel molecular orbital 

calculation on the molecule Mo^ClgCPHg]^ which exhibits C2h point group 

symmetry. 
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EXPERIMENTAL 

Materials 

Because Mo4Clg[PEt3]4 is slightly air and moisture sensitive, 

materials used in the synthesis were dried and handled with Schlenk 

techniques. Tetrahydrofuran (THF) was dried and peroxides removed by 

stirring with sodium and benzophenone. After this treatment, the THF was 

vacuum distilled onto molecular sieves for storage. Purification of AICI3 

by sublimation was necessary before use. The sublimer consisted of two 

compartments separated by a coarse frit. A Teflon sleeve in the conpart-

ment for the sublimed material and a large, greaseless 0-ring joint on the 

end of this compartment facilitated the recovery of the AICI3. Commercial 

AICI3 was purchased from several sources; however, only the material 

obtained from Fisher Scientific Company was satisfactory. Other sources 

supplied AICI3 that contained a yellow impurity which concurrently 

sublimed with the AICI3. Addition of aluminum metal strips to the crude 

material chamber of the sublimer, a procedure that should eliminate FeCl3, 

did not diminish the contamination of the sublimed material. After 

sublimation, the AICI3 was stored in a nitrogen filled drybox. Chloro-

benzene was refluxed over CaH2, then distilled and stored under nitrogen. 

Other solvents and triethylphosphine were used as received. The starting 

material for the preparation of the tetranuclear cluster, Mo2[0Ac]4, was 

synthesized according to literature procedure (5). Mo4Clg[PEt3]4 was 

stored under either vacuum or nitrogen to prolong shelf life. 
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Synthesis 

For a typical preparation of the tetramer, 3.0 g Mo2C0Ac]4 (7.0 

mmol), 3.73 g AICI3 (28 mmol) and 2.1 mL PEtg (14.2 mmol) were utilized. 

The AICI3 and Mo2[0Ac]4 were placed in a reaction flask in the drybox. 

About 20 mL of THF were vacuum distilled into the flask, then phosphine 

was added under a nitrogen flow. After refluxing for 4 hours, the 

solution was cooled and filtered. An aluminum chloride-acetate species, 

possibly AlCl2[0Ac], and Mo2Cl4CPEt3]4 were removed from the product by 

washing the product several times with methanol. A brief wash with a 

minimal amount of diethyl ether was followed by vacuum drying. This 

procedure gave an 84% yield (3.37 g) of Mo4Clg[PEt3]4. 

X-ray Structure Determination 

Crystals of Mo4Clg[PEt3]4 were grown from chlorobenzene by placing 

the solvent and powdered product in a small glass tube which was then 

sealed. The tube was placed vertically in a sand bath which was gently 

heated on the bottom. After several days, crystals of suitable size 

were observed in the tube, A crystal was selected and glued in a 

capillary with Canada Balsam, then indexed on the Ames Laboratory 

diffractometer (6) using the automatic indexing program ALICE (7). The 

unit cell was indicated to be primitive monoclinic. Standard reflections 

were checked every 75 reflections and found not to vary significantly. 

Two full octants of data (h,k,l and -h,-k,l) and a portion of a third 

(-h,k,-l) were collected for a total of 5340 reflections. These data 
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were corrected for Lorentz and polarization effects. An empirical 

absorption correction was carried out using diffractometer 4^scan data 

and the program ABSN (8). Other important crystallographic data are given 

in Table I-l. 

Table I-l. Crystal data for Mo^ClgCPEtg]^ 

mol. wt. 
color 
cry St. dimens. mm 
space group 
cell dimens.3 

a A 
b A 
c A 
0 deg. 

cell volume, A^ 
molecules/cell 
wavelength A 
linear abs. coeff. cm"^ 
20 limit, deg 
unique no. data 
obs. data [Fo>3a(Fo)] 
final residuals 

max. residual 
e" density 

^At 25®C, least-squares fit of 16 reflections with 28>20°. 

Structure Solution and Refinement 

Systematic absences in the OkO and hOl reflections coupled with the 

information from the HPR plot (9), which indicated a centric cell, led to 

the selection of the space group P2i/a. A Patterson map was used to 

1140 g/mol 
yellow-brown 
0.25X0.20X0.10 
P2i/a 

14.44(1) 
12.593(2) 
13.75(1) 

119.10(7) 
2184(2) 

2 
0.71034 

17.7 
50 

4453 
2843 

0.050 
0.060 -
0.9 e'/fi? 
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determine the position of the first molybdenum (10). The position of the 

second molybdenum atom was apparent in the electron density map obtained 

after the first calculation of structure factors. Subsequent electron 

density maps were used to locate the remaining atoms. There were six 

unique ethyl groups, but two of the groups on the P2 atom were disordered 

as illustrated in Figure I-l. Inclusion of isotropic thermal parameters 

MO! 

Z/ C2HB—t2l2B 
^C23/ \ 

C232A \ r*oioA 

Figure I-l. Carbon atom disorder in Mo^ClgCPtCgHs)]]^ 

for the disordered carbon atoms and anisotropic thermal parameters for the 

ordered carbons as well as the heavier atoms in the parameter refinement 

led to a R factor of 0.079. There were unexplained electron densities 

located above and below the Mo-Mo short bond. Inclusion of a disordering 

of the molybdenum atoms to these positions and varying the occupancy 

decreased the R value to 0.053. The resulting occupancy of the molybdenum 
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atoms was about 93% in the major position and 6% in the minor position. 

The data were inspected and found not to need secondary extinction 

correction. At this point, the data were reweighted based on the 

requirement that should be a constant function of sin e/x (11). 

Methylene hydrogen positions were calculated for the ordered ethyl chains 

utilizing a C-H bond of 1.05 A and H-C-H angle of 109.54°. The final 

hydrogen positions were determined by inserting the hydrogen atom 

positions, then refining on the carbon atom positions. The new carbon 

positions were then used to calculate new hydrogen positions. This 

procedure was repeated until the carbon atoms were shifting significantly 

less than 1 standard deviation. Tables 1-2 and 1-3 list final atom 

positional and thermal parameters for nonhydrogen atoms. Positional 

parameters for hydrogen atoms are listed in Table 1-4. Table 1-5 contains 

important bonding and nonbonding distances and angles. Figure 1-2 is an 

ORTEP drawing of the tetranuclear unit while Figure 1-3 shows the entire 

molecule with carbon and molybdenum disorder. 

Extended HCfckel Calculations 

Extended HCfckel calculations were performed with a program obtained 

from E. R. Davidson of the University of Washington. This program (12) 

allows iterative calculations to charge self-consistency and permits the 

use of three mirror planes in the molecule. Atomic coordinates (Table 

1-6) were obtained from the crystal structure of MogClgCPEtg]^; however, 

hydrogen atoms were substituted for the alkyl groups on the phosphine 

ligands. Hydrogen atom positions were calculated assuming a P-H bond 
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Table 1-2, Positional parameters [xlO^] for Mo^ClgCPEtg]^^ 

Atom X y z mult.^ U(ave)^ 

Mo(l) 6112.4(5) 4801.9(5) 1389.7(5) 
941.1(5) Mo(2) 4440.6(5) 5114.9(5) 

1389.7(5) 
941.1(5) 

Mo (3) 5305(8) 4073(9) 1131(9) 
Mo(4) 5299(8) 5821(9) 1226(9) 
CI (IB) 5955(1) 3301(1) . 198(1) 
C1(2B) 6462(1) 6203(2) 446(1) 
CI(IT) 4329(2) 6291(2) 2279(2) 
C1(2T) 6963(2) 3520(2) 2882(2) 
P(l) 4034(2) 3763(2) 2077(2) 
P(2) 7088(2) 6120(2) 2991(2) 
c(iii) 4889(7) 3780(8) 3588(7) 
C(121) 3796(7) 2376(7) 1650(8) 
C(131) 2718(7) 4145(8) 1911(8) 
C(112) 4507(8 3086(11) 4254 8) 
C(122) 4724(8) 1770(8) 1686(9) 
C(132) 1900(7) 4512(10) 746(9) 
C(221) 7040(8) 5850(9) 4256(8) 
C(222) 7963(9) 6196(13) 5344(10) 
C(211A) 6500(20) 7580(20) 2600(20) 
C(211B) 
C(212A) 

7160(30) 
6250(30) 

7480(20) 
8160(40) 

2780(20) 
2340(40) 

C(212B) 7080(20) 8370(20) 3500(20) 
C(231) 8450(10) 6240(20) 3340(10) 
C(232A) 8970(20) 5630(20) 2770(20) 
C(232B) 8870(20) 5420(20) 3520(20) 

0.932(3) 
0.933(3) 
0.058(2) 
0.054(2) 

0.50 
0.50 
0.50 
0.50 
1.00 
0.50 
0.50 

35 
36 
38 
41 
50 
47 
63 
53 
50 
60 
64 
66 
69 
99 
81 
81 
69 

105 

^Estimated standard deviations are given in parentheses for the last 
significant digits. 

^Unless noted otherwise, multiplicity is 1.00. 

cu(ave) [x lO^, A^] is the average of Uji, U22 and U33. 
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Table 1-3. Thermal parameters [xlO^] for Mo^ClgCPEtg]^^ 

Atom Ull U22 U33 U12 Ul3 ^23 

Mo(l) 30.6(4) 39.5(4) 34.4(4) 0.0(3) 14.2(3) 0.8 3) 
Mo(2) 32.4(4) 39.9(4) 36.3(4) 0.9 3) 16.8(3) 0.6 3) 
Mo(3) 30(5) 44(6) 41(5) -3(4 

3) 
16(5) -3(5 

3) 

Mo(4) 39(6) 41(6) 43(6) -4(5 27(5) -8(5 
CI (IB) 56(1) 46(1) 49(1) 9.9 9) 24.3(9) 1.5 9) 
C1(2B) 47.1(9) 51(1) 41.8(9) -11.8 8) 20.3(8) -2.3 8) 
CI(IT) 71(1) 62(1) 57(1) 5(1 37(1) -10(1 

8) 

C1(2T) 51(1) 60(1) 47(1) 11.1 9) 20.9(9) 11.4 9) 
P(l) 45(1) 60(1) 45(1) -4.2 9) 23.1(9) 6.5 9) 
P(2) 62(1) 69(1) 48(1) -21(1 27(1) -15(1 
c(iii) 58(5) 77(6) 57(5) 3(4 32(4) 6(4 
C(121) 66(5) 66(5) 67(5) -9(4 35(5) 9(4 
C{131) 54(5) 77(6) 75(6) -4(4 37(5) 8(5 
C(112) SSI 147(10) 9(6 44(5) 39(6 
C(122) SSI 58(5) 6(5 49(6) 6(5 
C(132) 52(5) 111(8) 80(6) 15(5 27(5) 27(6 
C(221) 73(6) 87(6) 48(5) -18(5 30(5) -15(5 
C(222) 82(6) 166(14) 68(6) -22(8 24(5) -16(8 
C(211A) 82(6) - - - -  -  - - - - -  -  —  

C 2118) 101(8) — — — — — — — — — — — — 

C(212A) 171(14) — — —  —  —  —  -  -  - —  —  —  

C(212B) 98(6) — — — —  —  —  —  —  —  —  —  - —  —  —  

C(231) 136(5) —  — — —  —  —  —  —  —  —  —  —  — — — 

C(232A) 80(5) — — —  —  —  —  -  -  - —  —  —  

C(232B) 103(6) —  -  - -  -  - - - - —  -  - - - -

^Estimated standard deviations are given in parentheses for the last 

significant digits. The anisotropic thermal parameter expression used is 

exp[-2*2(Uiih2a*2 + + U331V2 + ZUighka+b* + ZUighla+c* + 

2U23klb*c*)] with U's in A^. Isotropic thermal parameters are given as 

and are in 
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Table 1-4. Hydrogen positional parameters^ 

Atom X y z 

H(lll) 4941 4568 3872 

H(112) 5643 3510 3780 

H(121) 3183 2344 821 

H(122) 3574 1974 2166 

H(131) 2832 4777 2460 

H{132) 2396 349 4 2107 

H(221) 6959 5025 4297 

H(222) 6367 6233 4189 

- ^ôl 1 hydrogen atoms were assigned isotropic U values of 50.7 x 
10-3 ^2^ 
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Table 1-5. Distances (A) and angles (deg) for Mo^flgCPEtg]^' 

Distances 

Mo(l)-Mo{2' ) 
Mo(l)-Mo(2) 
Mo(l)-Cl(lB) 
Mo(l)-Cl(2B) 
Mo(l)-Cl(2T) 
Mo(l)-P(2) 
Mo(2)-Cl(lB) 
Mo(2)-Cl(2B) 
Mo(2)-Cl(lT) 
Mo(2)-P(l) 
P(l)-C(lll) 
P(l)-C(121) 
P(l)-C(131) 
P(2)-C (221) 

2.904(3) 
2.217(2) 
2.439(2) 
2.385(2) 
2.421(3) 
2.563(3) 
2.427(2) 
2.382(2) 
2.427(3) 
2.564(2) 
1.829(9) 
1.821(10) 
1.864(9) 
1.806(9) 

P(2)-C(23B) 
P(2)-C(21A) 
P(2)-C(21D) 
C(lll)-C(112) 
C(121)-C(122) 
C(131)-C(132) 
C(221)-C(222) 
C(211A)-C (212B) 
C(211A)-C(212A) 
C(211A)-C (211B) 
C(212B)-C(212A) 
C(212B)-C (211B) 
C(231)-C(232A) 
C(231)-C(232B) 

1.795(18) 
1.981(28) 
1.749(29) 
1.549(15) 
1.522(13) 
1.528(14) 
1.504(16) 
1.487(36) 
0.818(58) 
0.856(42) 
1.483(51) 
1.528(37) 
1.521(27) 
1.163(33) 

Nonbonding distances 

C1(1B)-C1(2B) 
C1(1B)-C1(2B') 
C1{1B)-C1(1T) 
C1(1B)-C1(2T) 
C1(2B)-P(1) 

3.710(3) 
3.217(3) 
3.267(4) 
3.259(4) 
3.183(4) 

C1(2B)-P(2) 
Cl(IT)-P(l) 
C1(1T).P(2) 
Cl(2T)-P(1) 
C1(2T)-P(2) 

3.162(4) 
3.206(4) 
3.617(5) 
3.790(5) 
3.280(4) 

Mo(3|; 
Mo(3)-Cl(2B 
Mo(3)-Cl(2T) 

Distances from disordered Mo(4) unit to ligands 

Mo(3)-Mo(4') 
Mo(3)-Mo(4) 

Cl(lBj 

2.921(15) 
2.205(16) 
2.156(10) 
2.440(10) 
2.513(11) 

Mo(3)-P(l) 
Mo(4)-Cl(lB) 
Mo 4)-Cl 2B) 
Mo(4)-Cl(lT) 
Mo(4)-P(2) 

2.744(10) 
2.210(11) 
2.440(11) 
2.526(11) 
2.570(12) 

^Estimated standard deviations are given in parentheses for the last 
significant digits. 
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Table 1-5. (Continued) 

Angles 

Mo(2')-Mo{l)-Mo(2) 90.50(8) Cl(lB)-Mo(l)-Mo(2) 102.57(7) 
Mo(l')-Mo(2)-Mo(l) 89.50(8) Cl(2B)-Mo(l)-Mo(2) 101.96(7) 
Mo(l')-Cl(lB)-Mo(2) 73.27(7) Cl(lB)-Mo(2)-Mo(l) 102.03(7) 
Mo(l')-Cl(2B)-Mo(2) 75.04(8) Cl(2B)-Mo(2)-Mo( 1) 101.35(8) 
Mo(2')-Mo(l)-Cl(2T) 135.89(6) Cl(2B' )-Mo(2)-P(l) 80.04(8) 
Mo(l')-Mo(2)-Cl(lT) 136.91(6) C1(1B')-Mo(2)-Cl(lT) 84.58(8) 
Mo(2')-Mo(l)-P(2) 131.75(7) Cl(lB)-Mo(l)-Cl(2T) 84.25(9) 
Mo(l')-Mo(2)-P(l) 132.44(6) Cl (2B)-Mo( 1)-P(2) 79.31(8) 
Mo(2)-Mo(l)-Cl(2T) 111.95(8) C1(1B ' )-Mo(2)-P(l) 152.53(7) 
Mo(l)-Mo(2)-Cl(lT) 111.23(9) C1(2B')-Mo(2)-Cl(lT) 145.08(8) 
Mo(2)-Mo(l)-P(2) 101.12(8) Cl (lB)-Mo( 1)-P(2) 155.77(7) 
Mo(l)-Mo(2)-P(l) 104.68(7) Cl(2B)-Mo(l)-Cl(2T) 143.90(7) 
P(2)-Mo(l)-Cl(2T) 82.28(10) P(l)-Mo(2)-Cl(lT) 79.89(8) 
Cl(2B)-Mo(l)-Cl(lB) 100.56(8) Cl(2B')-Mo(2)-Cl(lB') 101.00(9) 
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Figure 1-2. Structure of Mo4Clg[P(C2Hg)3]4^ with carbon atoms and dis­
ordered molybdenum atoms omitted 
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Figure 1-3, Structure of Mo4Clg[P(C2H5)2]4 showing disorder of molybdenum 
and carbon atoms 
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Table 1-6, Parameters for MoqClgCPHg]^ used in extended HCfckel 
calculation? 

Atom X y z final charge 

Mo(l) 1,452 1,108 0.000 0.24 
Mo(2) 1.452 -1.108 0.000 0.23 
CI(IT) 3,207 -2.000 1.413 -0.35 
C1(2T) 3,207 2.000 -1.413 -0,35 
CI (IB) 0.000 1.608 -1.855 -0.16 
CI(IB') 0.000 -1.608 1,855 -0.17 
C1(2B) 0.000 1.608 1,855 -0,14 
C1(2B') 0.000 -1.608 -1,855 -0.11 
P(l) 3.171 -1.680 -1,813 0.13 
P(2) 3.171 1.680 1,813 0.08 
H 4.187 -0.717 -1,813 0.07 
H 3.722 -2.940 -1,552 0.07 
H 2.542 -1.695 -3,064 0.07 
H 2.211 0.997 2.570 0.03 
H 4.324 1.871 2.584 0.05 
H 2,659 2.923 1.422 0.02 

mirror in the yz plane generated the remainder of the molecule. 

distance of 1.40 A and a H-P-H angle of 109,5°. The valence orbital 

ionization energies for Mo, CI and P were calculated (13) from atomic 

spectral data (14) and zeta exponents were determined from data compiled 

in Table 4 of the work by Cusachs and Corrington (15), These values are 

listed in Table 1-7, The necessary parameters for hydrogen atoms are 

stored in the program. The extended HCfckel calculation was iterated until 

the output atomic charges were within 0,0156 of the input charges for all 

atoms. The symmetry of the molecular orbital s was determined by examining 

the major contributing atomic orbitals. 
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Table 1-7. Calculated parameters for extended HCfckel calculationP 

Atom Orbital VOIE (eV) Zeta^ 

Mo 5s neutral -7.00 1.46 
(+1) -12.4 

5p neutral -4.26 1.46 5p 
(+1) -8.21 

4d neutral -7.99 2.53 
(+1) -13.35 

CI 3s neutral -25.28 2.23 
(-1) -17.0 

3p neutral -13.72 1.86 3p 
(-1) -3.74 

P 3s neutral -19.32 1.79 
(+1) -38.50 

3p neutral -10.14 1.48 3p 
(+1) -29.27 

*The Wolfsberg-Helmholtz interaction constant, K, was assumed to be 
1.89 for all orbitals. 

^Calculated from data in Table 4 of reference 15. 
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RESULTS AND DISCUSSION 

The differences between the structure that was initially reported (3) 

and the more accurate structure reported here are slight. The crystal 

quality was apparently significantly better in the current investigation 

as 20% more observed reflections were recorded for the correct unit cell 

which has 0.5% larger volume than previously reported. Although the 

current cell volume is essentially the same as the previously reported 

volume, the cell parameters are significantly different. The most obvious 

difference is the c axis which is about 0.5 A shorter than the 

corresponding axis in the preliminary structure report. Both cells are 

monoclinic, but the 0 angle differs by 3 degrees. Bond distances and 

angles within the cluster unit, however, are essentially the same as those 

previously reported. 

A feature that was not previously observed in the structure of 

Mo^ClgCPEt]]* is the 6% disordering of the molybdenum atoms. The plane 

containing those molybdenum atoms of lower occupancy is rotated about 79 

degrees from the plane containing the molybdenum atoms of higher 

occupancy. This leads to considerably different distances from the minor 

molybdenum positions to the ligands (Table 1-5) than from the major 

molybdenum positions to the ligands. The metal-metal distances within the 

plane of the rotated rectangular unit of molybdenum atoms are, within 

error, the same as those in the major plane. There was no obvious 

disorder of the chlorine and phosphorus atoms and no attempt was made to 

calculate the deviation from the true position of the ligands caused by 

the small amount of metal atom disorder. 
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Disorder of metal atoms within a ligand sphere has been previously 

observed for dinuclear compounds. The single crystal structure of 

K4Mo2Clg'2H20 revealed that about 7% of the molybdenum-molybdenum dimers 

are perpendicular to the major orientation (16), The structure of 

[Bu4N]2Re2Clg disclosed the same type of disorder as in K4M02CI8, but the 

major position was occupied 74% and the minor position 26% (17). The 

crystal structure of Re2Clg[PEt3]4 (18) also indicated disorder of the 

metal pair of atoms; however, the disorder was more severe. The Re-Re 

dimer equally occupied three mutually perpendicular orientations in this 

instance. In all of these examples, the ligand positions were only 

slightly affected by the metal atom disorder. 

As has been previously discussed (3,19), the Mo-Mo bonding in 

Mo^ClgCPEtg]^ is best described as triple bonds on the short edges of the 

rectangle and single bonds on the long edges. This seems very reasonable 

considering the bond distances (2.904(3) A and 2.217(2) A) and the acute 

angle at the bridging chlorine atoms (74.2° ave.). 

The bridging chlorines are extremely crowded. Three of the four 

nonbonding bridging chlorine to ligand distances average about 3.2 A which 

is considerably less than the sum of the van der Waals radii (20) of at 

least 3.4 A. The nonbonding distances in the tetranuclear cluster are 

compared with the more reasonable values found in K4M02CI8 in Figure 1-4 

(21). Further evidence for the formation of a long Mo-Mo single bond is 

the displacement of the molybdenum atom pairs from the center of the box 

formed by the ligands towards the central plane of bridging chlorine atoms 

as shown in Figure 1-5 (21). 
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3.217(3) 

3.163(4) 3./62(̂  

3,790(5) 3,6/7(4) 

# Mo 
O Cl 
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Figure 1-4, Nonbonding contacts (A) in Mo4Clg[P(C2H5)3]4 and 
K4M02C18'2H20 
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PLANE I PLANE 2 

e Mo 

O CI 

P 

Figure 1-5. Distances (A) of molybdenum atoms from least-squares planes 
in M04Cl8CP(C2H5)3]4. Angle between Plane 1 and Plane 2 is 
0.3° 
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The quadruple bond in di nuclear compounds such as M02CI 4[PEt3]4 

consists of 1 a, 2 ir, and 1 6 bond. The electronic transition between the 

6 and 6* energy levels occurs at about 560 nm and gives rise to the blue 

color of the compounds. The absence of the absorption in the tetranuclear 

compounds led to the conclusion that the 6-bond has been disrupted and 

that the electrons involved in the 6-bond are now forming the o-bond on 

the long edge of the cluster (3,19), Although this rather simplistic view 

is consistent with the spectrum, we believed an extended Htlckel molecular 

orbital calculation could be enlightening. 

A portion of the energy level diagram resulting from the HUckel 

calculation is presented in Figure 1-6. The symmetry labeled orbitals 

contain major contributions from the metal atoms. Unlabeled energy levels 

are primarily ligand based. As well as identifying the irreducible 

representation of each energy level, the symmetry with respect to the 

metal-metal bond was determined. For example, the highest occupied 

molecular orbital (HOMO) has a calculated energy of about -9.1 eV and 

has a character on the long edge and 6* overlap on the short edge of the 

rectangle. These types of overlaps are also illustrated in Figure 1-6. 

The lowest unoccupied molecular orbital (LUMO) has, as expected, a* 

overlap on the long edge of the rectangle and the short edge has 6 

overlap. The transition of lowest energy (by a^) appears to be a 

forbidden transiton which is 6* + 6 along the short edge rather than the 

6 + 6* transition observed in quadruply bonded compounds. The remainder 

of the energy level diagram is as anticipated. The close approach of the 

molybdenum atoms on the short edge should make the orbital overlap along 
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Figure 1-6. Molecular orbital s for Mo^ClgtPHg)^. Labeled orbital s are 
primarily metal based. Orbital overlap symmetry is given in 
the order long bond-short bond 



www.manaraa.com

28 

that edge the major determining factor in arrangement of the molecular 

orbitals. Indeed, the two metal bonding orbital s lowest in energy have a 

overlap along the short edge of the rectangle and the next four metal 

bonding orbital s have n overlap. 

The extended HCfckel calculation, therefore, substantiates the earlier 

interpretation that the Mo-Mo bonding in Mo^ClgCPEta]^ consists of 

alternating single and triple bonds in the rectangular M04 unit. 
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SECTION II. PREPARATION AND CHARACTERIZATION OF MogCTigtPR])* 
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Organic chemists have long been able to form, at will, large 

molecules containing primarily carbon atoms from small molecular building 

blocks, but this type of systematic chemistry has not been generally 

available to the inorganic chemist working with transition-metal 

compounds. The interest in modeling metal surfaces with metal clusters 

(1) has encouraged inorganic chemists to synthesize molecular metal 

clusters, and a number of very large clusters have been formed (2,3). 

Compounds containing metal-metal multiple bonds are a logical precursor 

for the synthesis of large clusters because of the potential for the 

addition of atoms or molecules to the multiple bond. The addition of 

transition-metal compounds to small cluster compounds to form larger 

clusters has been successful in some cases (4-6). The stepwise formation 

of small metal clusters is not satisfactorily understood and deserves 

further research. During a study of the addition of metal atoms to the 

Mo^ClgCPEtg]^ cluster, we discovered the MogCligCPRg]^ compounds. 

Although a single crystal structure has not been completed, 

characterization by other instrumental techniques and chemical reactions 

leads us to believe that linkage of two of the rectangular Mo^ClgCPRg]^ 

clusters has occurred. 
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EXPERIMENTAL 

Material s 

The air-sensitive nature of the compounds that were prepared required 

the use of Schlenk techniques and dry solvents. Tetrahydrofuran and 

chlorobenzene were dried and stored as previously described (7), 

flcetonitrile and dichloromethane were dried with CaH2 then vacuum 

distilled onto molecular sieves for storage. Other solvents and 

phosphines were used as received. AICI3 was purified by sublimation as 

previously described (7), The MoCCOlg was dried by storing in a 

desiccator containing CaSO^ for several weeks before use. The starting 

material for the preparation of the tetranuclear clusters, Mo^COAc]^, was 

synthesized according to literature procedure (8). The Mo[C0]4Cl2 was 

synthesized from MoCCOlg and CI2 at -60°C (9). Chlorine was distilled 

from the cylinder into a trap where it was outgassed before distilling 

onto the molybdenum hexacarbonyl. After gas evolution had ceased, the 

excess CI2 was distilled from the product and the product was allowed to 

warm to room temperature. The Mo[C0]4Cl2 of highest purity was obtained 

when the MoCCOOg had been dried and a fresh cylinder of CI2 was used. 

Samples to be analyzed were decomposed in a KOH-H2O2 aqueous 

solution. In those instances where the sample resisted decomposition by 

this method, the sample was mixed with powdered NaOH and heated in a 

nickel crucible until decomposed. Molybdenum analyses were accomplished 

by precipitation of Mo02[CgHg0N]2 (10). The chloride content was obtained 

by potentiometric titration of the solution with standardized AgNOg. 
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Carbon, nitrogen, hydrogen and phosphorus analyses were performed by the 

Ames Laboratory Analytical Services. 

Physical Measurements 

A Beckman IR4250 spectrometer was used to measure the infrared 

spectra. The solution uv-visible spectra were recorded with a Gary 14 

spectrometer. A Beckman DU spectrophotometer was used for measuring the 

reflectance spectra. The reference compound for the reflectance spectra 

was BaSOq, 

X-ray photoelectron spectra were obtained by grinding the sample in a 

dry box, spreading the powder on a strip of Ag-Cd alloy, then transferring 

directly into the AEI ES200B spectrometer. Aluminum Ka radiation (1486.6 

eV) was used to irradiate the sample. Nonmonochromatic radiation was used 

with a 4x4 slit setting. The electrostatic charge on the sample was kept 

constant by using an electron floodgun. Binding energies of resolved 

peaks were referenced to the C Is signal which was assumed to be 285.0 

eV. Data reduction and spectrum resolution computations were accomplished 

with APES (11), a computer program developed in this laboratory to resolve 

XPS spectra, using a previously described procedure (12). 

Synthesi s 

Mo^ClgCPRg]^ 

The tetrameric clusters were synthesized from Mo2[02CCH3]4 using 

AICI3 in THF and the appropriate phosphine. The previously published 
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method, using a Mo2[0Ac]4:A1Cl3:PR3 mol ratio of 2:4:4, gave approximately 

a 50% yield (13), but by doubling the amount of AlClg used (7), yields of 

close to 80% were achieved. 

2 MogCOAc]* + 8 AICI3 + 4 PR3 > M04Cl8CPR3]4 + 8 AlCl2(0Ac) 

Washing the product with methanol removes any Mo2Clg[PR3]4 that is 

present for the tetrameric clusters formed with PEt3, PPr3, or P[n-Bu]3. 

Apparently some MogCl 4[PMe2Ph]2 co-crystallizes with the tetranuclear 

compound in the synthesis of M04Clg[PMe2Ph]4. A visible spectrum of the 

product indicated that about 2% of the di nuclear compound was present. 

Dissolving the tetrameric cluster in CH2CI2 and reprecipitating it by 

adding hexane was necessary to remove the blue M02CI4[PMe2Ph]4. The yield 

of pure material was about 75%. Anal. Calcd. for M04Clg[PMe2Ph]4: Mo, 

31.46; CI, 23.25; C, 31.50; H, 3.64; CI/Mo = 2.00, C/Mo = 8.00. Found: 

Mo, 31.19; CI, 23.03; C, 31.10; H, 3.77; (CI/Mo = 2.00, C/Mo = 7.96). 

MogCl16[PR3]4 

The initial synthesis of MogCli5[PEt3]4 resulted from the reaction 

between M04Clg[PEt3]4 and Mo[C0]4Cl2 in a 1:1 mol ratio in refluxing 

chlorobenzene. After 24 hours, filtration of the mixture separated a 

yellow-brown solid from the brown solution. Vacuum distilling the solvent 

from the filtrate left dark-brown and yellow solids, which were separated 

by extracting with acetonitrile. The infrared spectrum of the yellow 

solid indicated that it was Mo4Clg[PEt3]4. The infrared spectrum of the 

brown substance indicated the presence of carbonyl ligands. No further 
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characterization of the latter compound was undertaken, but it was 

presumed to be Mo[C0]3Cl2CPEt332 (9). 

After the insoluble product from the above reaction was subjected to 

a chlorobenzene extraction to remove the tetranuclear cluster compound, an 

analysis was obtained. Found: Mo, 41,50; CI, 30,14; C, 16,23; H, 3,37, 

Assuming all of the carbon present is from triethylphosphine, the 

calculation of 6,98% P was possible. This leads to a CI/Mo ratio of 1,97 

and a P/Mo ratio of 0,52, Calcd, for MogCligCPEtg]^: Mo, 42,47; CI, 

31,38; C, 15,95; H, 3,35; P, 6,85, 

The analysis indicated that triethylphosphi ne had been lost from the 

tetrameric compound. The synthesis of pure Mo[C0]4Cl2 is difficult and 

time consuming; therefore, the use of other phosphine accepting compounds 

was investigated. The reaction of MoCCOlg with M04Clg[PEt3]4 in a 1:1 mol 

ratio in refluxing chlorobenzene was found to be the best synthetic route. 

After 2 hours, the product was filtered from the solution and extracted 

with the filtrate, A 78% yield of MogCligCPEtg]^ was obtained. The 

proposed octanuclear cluster compound was stable in air for short periods 

of time (<1 day) and should be stored under nitrogen or vacuum. 

The synthesis of other phosphine derivatives of the proposed 

octanuclear cluster was possible. The tetranuclear compound, 

Mo^ClgCPRg]^, was first synthesized with the desired phosphine ligand. 

The tetranuclear compound was then reacted with MoCCOjg in a 1:1 mol ratio 

in refluxing chlorobenzene for several hours. The resulting precipitate 

was extracted with solvent distilled from the filtrate, dried, and 

analyzed. Anal, Calcd, for MogCliGCPPrg]^: Mo, 38,85; CI, 28,71; C, 
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21.88; H, 4.29. Found: Mo, 35.82; Cl, 26.10; C, 24.34; H, 4.40; (Cl/Mo = 

1.97). Anal. Calcd. for MogCli6[PMe2Ph]4: Mo, 40.67; Cl, 30.05; C, 

20.36; H, 2.35; P, 6.56. Found: Mo, 37.30; Cl, 27.02; C, 24.54; H, 2.94; 

P, 6.36; (Cl/Mo = 1.96; P/Mo = 0.53). 
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RESULTS AND DISCUSSION 

Chemical analysis of the product obtained from the reaction between 

Mo^ClgCPEtg]^ and Mo[C0]4Cl2 in chlorobenzene, indicated the formulation 

to be {M02Cl4[PEt3]}j(. The Infrared spectrum was very similar to that of 

tetrameric clusters, but there were some obvious differences. The 

absorptions found at 1410 and 425 cm"^ in the spectra of Mo^ClgCPEtg]^ 

were dramatically reduced in intensity, and the band at 970 cm"^ was 

absent. The region of the spectrum between 200-400 cm"^, which contains 

mainly absorptions due to Mo-Cl stretching vibrations, also changed, as 

shown in Figure II-l. There were now three absorptions: 370 cm"^ sharp 

and strong, 335 cm"^ mediun, and 275 cm"! medium. The x-ray powder 

pattern indicated that the compound was crystalline and had a large unit 

cell. The largest observed d spacing was 14.53 A, but strong diffraction 

lines also occurred at d values of 10.63 A and 8.09 A. The decreased 

phosphine content and also the apparent similarity to the tetrameric 

structure led to the deduction that Mo[C0]4Cl2 was acting as a phosphine 

acceptor and thereby promoting the linkage of two tetrameric clusters to 

form the proposed octanuclear cluster compound. 

2 Mo^ClgCPEtg]^ + 2 Mo[C0]4Cl2 > M03CI jg[PEt3]4 + 

2 Mo[C0]3Cl2CPEt3]2 + 2 CO 

The product is nearly insoluble in a variety of solvents ranging from 

hexane to acetonitrile. Because of the insolubility, reflectance 

spectroscopy was used to investigate the visible spectrum. For reference. 
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Figure II-l. Infrared spectra of a) MogClgCPEtg]^ and b) MogCligCPEtg]^ 
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the reflectance spectrum of Mo^ClgCPEtg]^ was also obtained in this 

investigation. Previous work (13) indicated that bands in the visible 

spectra of Mo^ClgL^ derivatives undergo a blue shift as L decreases in 

field strength according to the spectrochemical series. Since the 

formation of the proposed octanuclear cluster could be considered as 

resulting from the substitution of two of the trialkylphosphine ligands by 

two chlorine atoms, one might predict a blue shift of the absorptions when 

comparing the spectrum of the tetrameric compound to the spectrum of the 

proposed octameric compound. This blue shift does occur as can be seen in 

Figure 11-2. The MogCligCPEtg]* spectrum has an absorption at 520 nm 

which is not obvious in the Mo^ClgCPEtgOg, spectrum. This band may have 

been accentuated by the blue shift of the tetranuclear absorption at 420 

nm. The band at 305 nm in the spectrum of the tetranuclear cluster may be 

blue shifted when phosphine ligands are replaced by chlorine ligands 

causing it to coincide with the absorption at 270 nm. This would produce 

one broad band as is observed in the spectrum of MogCligCPEtg]^. 

When the XPS spectrum of Mo^ClgCPBug]^ was obtained, the data 

indicated that the sample may be decomposing in the spectrometer (13). 

This experiment was performed with monochromatic radiation, which dictates 

extensive exposure time of the sample to radiation and high vaccum in the 

spectrometer. The XPS spectrum of MogCligCPEtgl^, was obtained using non-

monochromatic radiation which allows the minimum data collection time. 

The data were collected and retained in three portions: scans 1-20, 21-

50, and 51-70. The first and last sets of data were resolved using the 

APES computer program (11) and are shown in Figure 11-3. The first 
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Figure 11-2. Reflectance spectra of MoACTaCPEt?]* ( ) and 
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Figure II-3. CI 2p XPS of MOgCljgCPEtj]^: a) scans 1-20; b) scans 51-70 
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resolutions were done with two types of chlorine atoms specified. 

Chlorine binding energies of 199.5 eV and 198.4 eV were found for 

both sets of data, but the peak area ratios were 2.06/1.0 for the first 20 

scans and 2.52/1.0 for scans 51-70. Because the band widths were too 

large, over 1.5 eV full-width at half-maximum (FWHM), three types of 

chlorine atoms were specified in the next resolutions. The CI 2p3/2 

binding energies determined from the data set consisting of the first 20 

scans were 199.6, 198.9, and 198.1 eV; areas were in the ratio 

2.72/1.51/1.0. Resolution of data for the last set of 20 scans was 

provided by chlorine 2p3y2 binding energies of 200.0, 199.3, and 198.3 

eV. In this case, the area ratios were 1.32/1.99/1.0. In both sets of 

data, the FWHM was 1.3 eV for all three types of chlorine atoms. These 

spectra clearly indicate that decomposition is occurring under XPS 

conditions. 

The highest chlorine binding energy found for MogCligCPEtg]^ is an 

appropriate value for a doubly bridging chlorine. In MbgClig^-, this type 

of chlorine has a binding energy of 199.8 eV (14); in Mo^ClgCPBug]^ it is 

199.6 eV (13). The lowest binding energy in the proposed octameric 

cluster is typical for terminal chlorine (13,14). The binding energy of 

about 199 eV has been tentatively assigned to a "weakly doubly-bridging" 

chlorine. This is envisioned as a chlorine bridging two metal atoms that 

are not bound to each other. The peak area ratios are not very 

informative because the peak height is very sensitive to small changes in 

peak shape. This introduces a large error into the ratio of the peak 

areas. Therefore, one must be extremely careful in interpreting 
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information from the area ratios in cases where the spectrum has a broad, 

featureless shape. 

Reactions of MogCligCPEtg]^ also indicate a weak linkage between 

tetrameric units. The octameric compound dissolved in hot chlorobenzene 

with excess PEtg yielded a yellow-brown solution. Further heating gave a 

blue solution which had absorptions at 588 and 330 nm, similar to the 

absorptions of M02CI 4[PEt3]4 (15). The addition of triethylphosphi ne to 

the presumed octameric cluster was later repeated at room temperature. A 

mixture containing a 4:1 mol ratio of PEtgiMogCligCPEtg]^ in chlorobenzene 

was stirred for about 20 hours. After the solvent was stripped from the 

filtrate, the resulting residue was extracted with cyclohexane to remove 

any blue MogCl^CPEtg]^. The yellow, cyclohexane insoluble product, 

recovered in a 55% yield, was identified as Mo^ClgCPEtg]^ based upon its 

uv-visible spectrum and x-ray powder pattern. 

The M02CI 4[PEt3]4 that was found in the reaction between the assumed 

octameric cluster and phosphine was presumed to arise from the tetrameric 

cluster reacting with excess triethylphosphine. In another experiment. 

a solution of triethylphosphi ne in chlorobenzene was gradually added to 

the proposed octameric cluster compound in refluxing chlorobenzene. When 

a stoichiometric amount of triethylphosphine was added, most of the 

octameric cluster compound reacted. The uv-visible spectrum and x-ray 

powder pattern indicated the product was Mo4Clg[PEt3]4. The yield was 

about 60%. M02CI4[PEt3]4 was not detected in the uv-visible spectrum. 

MogCligCPEtg],. + 4 PEtg > 2 M04Clg[PEt3]4 

Mo4Clg[PEt3]4 + 4 PEt3 > 2 M02CI4[PEt3]4 
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Needle-shaped crystals were produced in the reactions used for the 

synthesis of the triethylphosphine octameric compound, but they were too 

small for an x-ray structure determination. We speculated that a solvent 

with a higher boiling point might permit growth of larger crystals. When 

was refluxed in dichlorobenzene, the solution turned 

slightly brown, and after refluxing overnight, the solid appeared to be a 

darker brown. The infrared spectrum of the solid recovered from this 

treatment indicated that triethylphosphine was present, but the 

absorptions due to the triethylphosphi ne had lower intensity than in the 

spectrum of the starting material. The region of the infrared spectrum 

between 200-400 cm"^ now resembled that of B-M0CI2. This region of the 

infrared spectrum of 3-M0CI2 (16) is shown in Figure 11-4. A comparison 

of Figures II-l and 11-4 clarifies the changes that occur in the infrared 

spectrum and illustrates the usefulness of infrared spectroscopy in 

identifying which of the possible products is present. The x-ray powder 

pattern of the brown material had also changed to the broad, diffuse 

pattern characteristic of G-MoClg# 

Confirmation of the octameric nature of MogCligCPEtg]^ could be 

obtained by a single crystal structure if a large crystal were 

available. Octameric cluster compounds were synthesized with other 

phosphine ligands in the search for a compound of which suitable crystals 

could be grown. Several reactions were executed using MoCCOjg to remove 

phosphine from the tri-n-butylphosphine tetrameric compound. In the 

following reactions, MoCCOQg and Mo4Cl8[PBu3]4 were added in a 1:1 mol 

ratio to chlorobenzene. In the first reaction attenpt, the reaction 
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Figure 11-4. Infrared spectrum of p-MoClg 
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mixture was held at reflux for 2 hours, A dark-brown precipitate was 

filtered from the solution. The infrared spectrum of this product 

contained the broad absorption at about 290 cm'^ typical of g-MoCl2, but 

weak bands arising from bound phosphine were present. When the volume of 

the filtrate was doubled by adding hexane, a yellow-brown precipitate 

formed. The infrared spectrum contained bands originating from Mo-Cl 

stretching vibrations at 270, 330, and 375 cm"^, very close to the 

frequencies found in MogCligCPEtgl^. A chlorobenzene solution of the 

yellow-brown material contained an absorption at 422 nm. This material is 

apparently not Mo^ClgCPtn-Bu)^]^ because the latter has an absorption at 

435 nm. The tetrameric cluster also absorbs at 310 nm. The corresponding 

absorption in the new compound must be below 300 nm, because it was 

obscured by the solvent absorption. Based upon the infrared and visible 

spectra, the yellow-brown material seemed to be MogCli6[P(n-Bu)3]4. Warm 

cyclohexane dissolved the apparent octameric product, and a visible 

spectrum was obtained. The lowest energy absorption that was observed was 

at 420 nm. The other major absorption was a broad band at 285 nm, which 

could be resolved into absorptions at 282 and 288 nm. The spectrum of the 

cyclohexane solution also indicated a shoulder at about 360 nm. 

When the above reaction was repeated, a precipitate was observed 

after refluxing for 30 minutes, but the reaction was continued for 2 

hours, A large quantity of insoluble, dark-brown precipitate was 

recovered. Again, the infrared spectrum indicated the presence of some 

phosphine, but bands in the Mo-Cl region resembled those of g-MoCl2. The 

addition of hexane to the filtrate produced some crystals. When these 
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were redissolved In hexane, the visible spectrum was equivalent to the 

Mo^ClgCPtn-Bu)]]^ spectrum. 

The final reaction was done at a temperature below the boiling point 

of chlorobenzene. The temperature was increased gradually until all of 

the reactants had dissolved. After 15 minutes at that temperature, a 

small sample was withdrawn for a visible spectrum. Although the band at 

430 nm had started to shift toward 420 nm, the absorption at 310 nm moved 

very little. After an additional 10 minutes, another sample was taken. 

This time the band at 310 nm had definitely broadened towards 300 nm. 

When the solution started to turn cloudy, about 15 minutes later, the 

reaction was stopped. The precipitate was filtered and the solvent vacuum 

distilled from the filtrate. The resultant tar was stirred with hexane. 

This treatment precipitated some material from the solution. Frequently, 

crystals can be obtained by extracting a powder with an appropriate 

solvent. This method was attempted using cyclohexane, but the solubility 

of the apparent octameric cluster was not sufficient to produce 

crystals. The octameric nature of the material was confirmed by the 

infrared spectrum which contained the three typical absorptions in the 

region between 2 00- 400 cm"^. A 38% yield was obtained. 

The latter two reactions demonstrate that a material similar to 

g-MoClg is formed in the synthesis of MogCligCPtn-Bu)]]^, If the reaction 

time is short, the proposed octanuclear cluster is formed. However, if 

the reaction time is too long, the tetrameric cluster is formed. These 

reactions suggest that although the proposed octameric cluster is formed, 

it is unstable with respect to disproportionation in refluxing 
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chlorobenzene. The stable compounds are the tetrameric cluster and 

material similar to 3-MoCl2» which is probably more highly linked than the 

octameric cluster. Two octameric clusters are perhaps linked (Eqn. 1) or 

possibly primarily g-MoClg is formed (Eqn. 2), The instability of 

MogCliGCPtn-Bu)^]^ decreases the chances of the growth of a single crystal 

suitable for an x-ray structure determination, 

3 MogCli6[PR3]4 > 2 Mo^ClgCPEg]^ + Moi6Cl32[PR3]4 (1) 

n MogCligCPRg]^ > n Mo^ClgCPRg]^ + [Mo^Clg]^ (2) 

The apparent instability of MogCligCPtn-Bujg]* led to the synthesis 

of other octameric cluster compounds. The solubility of the proposed 

octanuclear cluster compounds can be varied by changing the length of the 

alkyl chain on the phosphine ligand. The tri propylphosphine derivative of 

the octameric cluster should have solubility properties between those of 

MogCli5[PEt3]4 and MogCligCPtn-Buig]*. The reaction between MoCCOlg and 

MoqClgCPPra]^ led to MogCliGCPPrg]^. which was identified by the typical 

absorptions in the Mo-Cl stretching region of the infrared spectrum and 

visible absorptions at 420 and 300 nm of a dichloromethane solution. The 

chemical analysis of MogCligCPPrgJ^ found significantly lower 

concentrations of molybdenum and chlorine than was calculated from the 

formula. However, a closer examination of the infrared spectrum indicated 

chlorobenzene was present, which would also account for the carbon 

analysis that is higher than calculated. The growth of single crystals 

was attempted by extracting the octamer with CH2CI2, but only powder was 

obtained. If the formation of octamer proceeded more slowly, crystal 
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growth might be promoted. Mo^ClgCPPrg]^ and MoCCOQg were sealed in a tube 

with chlorobenzene and placed in a 70°C oil bath. Although larger 

crystals were formed, none were big enough for a structure determi­

nation. Very fibrous crystals were formed in dichloromethane by placing 

the material in a sealed tube. A temperature gradient along the tube was 

accomplished by placing the tube in a sand bath which was heated on the 

bottom. Again, a crystal of sufficient size was not obtained. 

The dimethylphenylphosphine octameric cluster was also synthesized 

and found to have significantly better solubility in chlorobenzene or 

CH2CI2 than MogCligCPPrg]^, yet it still precipitates from solution during 

the synthesis. The analyses are again significantly different from 

calculated values although the CI/Mo and P/Mo ratios are correct. This is 

probably due to the inclusion of chlorobenzene in the crystals as was 

found for MogCligCPPrg]*. The analyses indicate that about 7% 

chlorobenzene is present. This would imply a PhCl:Mog ratio of about 

1.2:1.0. Apparently, the product that precipitates is not as pure as the 

product formed when other phosphine ligands are used. The infrared 

spectrum of the precipitated product did not have the distinctive 

absorptions in the Mo-Cl stretching region. After extracting the product 

with CH2CI2» the infrared spectrum contained the expected absorptions. 

Although the solubility of the PhMe2P octamer in CH2CI2 was greater than 

the other octameric cluster compounds, the solubility was still low enough 

that an extraction was possible without transporting a large amount of the 

desired compound through the frit. Guinier x-ray powder patterns of 

Mo4Clg[PMe2Ph34, MogCli5[PMe2Ph]4 before CH2CI2 extraction, and 
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patterns indicated that the extraction removed a material less crystalline 

than the octameric cluster compound. The sealed tube-sand bath technique 

was used to grow crystals. Several crystals were ground up and a powder 

pattern was obtained to ensure that they were not crystals of the 

tetrameric compound. 

A single crystal was found which, after considerable effort, was 

indexed (17) as monoclinic with the dimensions of a = 22.42 A, b = 8.49 A, 

c = 46.97 A, and g = 102.7°. Even though about 9500 reflections were 

collected in two hemispheres, only 820 were observed. A reflection was 

considered to be observed if the intensity was greater than twice the 

standard deviation of the intensity (18). The Patterson map was very 

complicated due to many Mo-Mo vectors. A superposition was done using a 

vector corresponding to the Mo-Mo diagonal of the rectangular tetrameric 

cluster. This is a unique vector in the tetramer, but in a linear 

octamer, it would give three superimposed images. The superposition 

indicated only tetrameric clusters were present. The computer programs in 

MULTAN (19) also indicated tetrameric clusters. The positions did not 

refine well, probably due in part to the poor data set, and in part due to 

the high pseudosymmetry of the Mo atoms. The high symmetry of the Mo 

atoms originated from their lying on approximately y = 0 and y = 1/2 

planes. Refinement was then attempted in two dimensions. The hOO, hOl, 

and 001 data were isolated and refined only in the x-z plane. The 

computer programs did not work properly when refinement was begun; 

however, the structure factors were calculated and an electron density map 
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was produced. This projected the cell contents into the x-z plane. The 

calculations were executed in the triclinic space group PI to avoid 

generating any extra atoms. When positions for 4 Mo atoms were inserted 

in the program as one tetrameric unit, the electron density map showed 

density for 7 other tetrameric clusters in the unit cell. These 

additional tetrameric clusters had not been generated by symmetry. 

Presumably if the molecules were larger than tetrameric clusters, this 

procedure would have identified them. At this point, the structure was 

abandoned since it was not deemed of sufficient interest, particularly 

with the poor data set. 

The solubility of MogCli6[PMe2Ph]4 in CH2CI2 was low, but the 

solution visible spectrum could be measured. Absorptions were found at 

304, 420, 550, and 620 nm. Based on earlier reflectance data of 

MogCligCPEt]]^ and solution spectra of MogCligCPPrg]* and 

MogCl i6[P(n-Bu)3]4, these absorptions are at the expected wavelengths 

(Table II-l). 

Vapor phase osmometry was used to attempt the determination of the 

molecular weight of MogCli6[PMe2Ph]4. Unfortunately, even saturated 

solutions were not concentrated enough to obtain reliable data. Samples 

were also submitted to the NSF Mass Spectrometry Center at Johns Hopkins 

University for analysis by the Fast Atom Bombardment method. Because of 

the low solubility of the octameric cluster, this method was not 

successful either. 
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Table II-l. Electronic absorption spectra of M04CI8L4 and MosCl^sl-A 

M04Cl8(PEt3)4â 

5.6 X 10-S M THF 

X (nm) e (M"^cm"^) 

245 2 X 10' 

308 1.7 X 104 

430 2.2 X 10% 

M04Clg[P(n-Bu)3]4* 

6.3 X lO'S M hexane 

X(nni) e (M"^ cm"^) 

248 2 X 104 

312 2.8 X 104 

435 3.5 X 103 

685 100 

M04Cl8(PEt3)4 

refl ectance 

X (nm) 

270 

305 

420 

675 

MogClig[P(n-Bu)3]4 

cyclohexane 

\ (nm) 

282 

288 
360 

420 

M08Cli6(PEt3)4 

ref l  ectance 

X (nm) 

275 

400 

520 

620 

MogCl i6(PPr3)4 

CH2CI2 

X (nm) 

300 

350 

420 

M04CI g(PMe2*)4 

4.9 X 10-4 M CH2CI2 

X (nm) e (M"! cm'l) 

310 2.2 X 10^ 

430 2.4 X 10^ 

680 50 

® Reference 11. 

MogCl i6(PMe2*)4 

~ 5 X 10-5 M CH2CI2 

X (nm) e (M-1 cm-^) 

304 3 X 104 

42 0 5 X 10^ 

550 7 X 102 

620 4 X 102 
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The structure of the octamers is in doubt since a crystal structure 

has not been done. However, based on the chemical and XPS evidence, the 

structures shown in Figure 11-5 are proposed. Either structure contains 

tetrameric units which should be easy to abstract. Three types of 

chlorine atoms are also present as suggested by the XPS data. The 

molybdenum atoms could be arranged in either of two modes illustrated. 

The metal-metal distance between tetrameric units can be calculated if the 

positions of the bridging chlorines are assumed. If the intercluster 

chlorine atoms are separated from one another by 3.4 A, the sum of the 

van der Waals radii (20), and the Mo-Cl distance is 2.41 A, the 

molybdenum-bridging chlorine distance in Mo^ClgCPEtg]^ (7), the 

molybdenum-molybdenum distance between linearly linked tetrameric units. 

Figure 11-5a, is 3.21 A. The pseudotetrahedron arrangement of molybdenum 

atoms found in the linkage between the tetrameric units in (b) is known to 

exist in Mo4F4[0(i-Bu)]8 (21). This would allow the nonbonded metal atoms 

to be about 0.4 A farther apart than in (a). Further work to determine 

the structure of the octanuclear compounds is being undertaken. 
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Figure 11-5. Proposed structure for MogCligCPEtg]^ 
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SECTION III. INSIGHT ON THE B-M0CI2 STRUCTURE 
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INTRODUCTION 

Although 0-MOCI2 was first synthesized nearly 20 years ago (1), its 

structure is still in doubt. There has been unanimous agreement that the 

compound is quite different from Mo5Cl]^2 (a-MoCl2) and is probably 

polymeric (1-4). The amorphous nature of p-MoClg has made it difficult to 

determine the correct structure. The x-ray powder pattern, consisting of 

broad, diffuse lines, was said to resemble that of CdCl2 (2), and there­

fore Allison, Anderson and Sheldon felt that 3-M0CI2 may have a similar 

close-packed layer structure. The measured magnetic moment of 0.49 BM 

suggested the presence of metal-metal bonding. The low chlorine/-

molybdenum ratio implied that the majority of chlorine atoms were bridging 

between at least two molybdenum atoms. Later x-ray photoelectron spectro­

scopic work (4) also indicated the bridging nature of the chlorine atoms. 

The peaks in the CI 2p XPS spectra of 0-MOCI2 and CdCl2 were reported to 

have "very similar profiles", and again the structure of 3-M0CI2 was 

suggested to be similar to that of CdCl2. 

3-M0CI2 is very insoluble in all common solvents and does not react 

as readily as M05CI12 (2)« However, Glicksman_e;t_al_. found that when 

3-M0CI2 was refluxed in pyridine for 3 days, a 26% yield of the Mo2Cl4Py4 

was produced (5). The reaction between 3-M0CI2 and a ten-fold excess of 

trialkylphosphine in refluxing ethanol produced M02CI 4[PR3]4 in low yield, 

even though the reaction time was longer than 3 days. These products led 

to the conclusion that 3-M0CI2 should be thought of as [Mo2Cl4]n, reflec­

ting the presence of M02 units with Mo-Mo bonds of multiple bond order. 
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Our interest in this problem was recently rekindled when similarities 

between M04CI8L4 tetranuclear clusters and 3-M0CI2 appeared. For example, 

Ryan observed that 0-MOCI2 was produced when Mo^ClgCC^HgO]^ lost THF upon 

vacuum drying at room temperature. The loss of methanol from 

Mo^ClgCMeOHlg under similar conditions also led to g-MoClg (6). In other 

work, it was found that tetranuclear clusters apparently may also be 

linked to produce octanuclear clusters, MogCligCPRg]^ (7). With certain 

trialkylphosphine ligands, linkage does not stop at the octanuclear 

compound but proceeds to a product similar to 3-MoCl2« The initial 

results of our probe into the structure and properties of 3-M0CI2 are 

presented here. 
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EXPERIMENTAL 

Materials 

Except where noted otherwise, samples were presumed to be air-

sensitive and were handled accordingly. Chlorobenzene and acetonitrile 

were dried by refluxing with CaHg. Chlorobenzene was then distilled and 

stored under nitrogen. The acetonitrile was vacuum distilled onto 

molecular sieves for storage. Triethylphosphine was used as received. 

AICI3 was purified by sublimation as previously described (8). Dry Et^NCl 

was produced by dissolving it in acetone and precipitating with ether. 

The product was then dried under vacuum at room temperature for about 1 

day (9). The preparations of Mo2C0Ac]4 (10), K4M02CI8 (11), Mo^ClgCPEtg]^ 

(8), and MogCligCPEtgJ^ (7) have been described previously. 

Analysis 

Molybdenum analyses were accomplished by decomposition of the sample 

in a tared crucible using nitric acid. The resultant M0O3 was fired at 

550°C before weighing. Decomposition of the samples for chloride analysis 

was done in a KOH-H2O2 aqueous solution. The chloride content was 

obtained by potentiometric titration of the solution with standardized 

AgNOg. Carbon, hydrogen, and nitrogen analyses were performed by the Ames 

Laboratory Analytical Services. 
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Physical Measurements 

Routine infrared spectra were obtained in a Beckman IR4250 

spectrometer. An IBM IR/90 spectrometer was used to measure the Fourier-

transform infrared spectra. Instrumentation for the acquisition of 

reflectance and x-ray photoelectron spectra has been previously described 

(7). 

Synthesis 

Literature e-MoClg 

Literature e-MoClg was prepared from Mo2[0Ac]4 and HCl(g) following 

the modified method of Glicksman et al. (5), The infrared spectrum of the 

product did not contain absorptions due to the acetate ligand; therefore, 

the reaction was assumed to be complete. 

Reactive B-M0CI2 

If Mo2C0Ac]4, AICI3, and PR3 are refluxed in tetrahydrofuran, the 

crystalline Mo^ClgCPRg]^ compounds are produced. However, if Mo2[0Ac]4 

and AICI3 are refluxed in chlorobenzene, a very amorphous form of 3-M0CI2 

is produced, A typical preparation was performed using 2.00 g (4.67 mmol) 

Mo2C0Ac]4 and 2,60 g (19,50 mmol) AlClg in about 20 mL of refluxing 

chlorobenzene. Brown precipitate formed very quickly, but the reaction 

was usually continued for about 6 hours. The precipitate was then 

filtered and extracted with chlorobenzene until the yellow filtrate had 

cleared. An infrared spectrum indicated that some form of acetate was 
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Still present in the precipitate. When the precipitate was extracted with 

acetonitrile, a dark green filtrate was observed, but the filtrate cleared 

after extracting for several hours. After vacuum drying at room 

temperature, a yield of about 90% was realized. The infrared spectrum of 

this product indicated that some acetonitrile and chlorobenzene were 

present, but there were no absorptions that could be attributed to an 

acetate ligand. Anal, Calcd. for MoClg: Mo, 57,50; CI, 42.50. Found: 

Mo, 52,53; CI, 38.22; C, 5.14; H, 0.56; N, 1.21 (CI/Mo = 2.04, N/Mo = 

0.16, C/N = 4.96). If the product was heated under vacuum at 85°C for 1,5 

days, the infrared spectrum indicated that the acetonitrile was eliminated 

but that a very small amount of chlorobenzene remained. Anal, Found: Mo, 

55,44; CI, 41,82 (CI/Mo = 2,04), If one assumes the balance of the 

material to be chlorobenzene, the chlorobenzene/molybdenum ratio is about 

0,04, 

Melt B-M0CI2 

Although this method for preparing S-M0CI2 was originally found by 

others in this laboratory (12), the obscurity of the report led to its 

inclusion here, A 1:4 mol ratio of K4M02Clg and AICI3 (2,82 g K4M02Clg 

and 2,38 g AICI3) were added to a melt composed of 52 mol-% AICI3, 

48 mol-% NaCl (6,93 g AICI3, 2,81 g NaCl), The reactants were sealed in a 

Pyrex tube and heated to 350°C for 4 days. The melt was cooled, 

pulverized in the air, and slowly added to IM hydrochloric acid. The 

mixture was stirred for about 10 min., then the acid was decanted from the 

solid. Another extraction of the solid was done, followed by filtration 
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and washing the solid product with ethanol. The product was air dried. 

This form of B-M0CI2, which seems to be fairly air stable, was obtained in 

about 70% yield. Anal. Found: Mo, 59.52; CI, 42.77 (CI/Mo = 1.94). 
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RESULTS AND DISCUSSION 

A product very similar to B-M0CI2 was frequently found during the 

characterization of MogCliGCPRg]^, (7). Synthesis of MogCligCPR]]^ from 

Mo2[0Ac]4 was a two step process. First a tetrameric cluster, 

M04Clg[PR3]4, was formed. Abstraction of trialkylphosphine ligands from 

Mo^ClgCPRg]^ by Mo[C0]6 in chlorobenzene led to the apparent octanuclear 

cluster. If the synthesis of MogCligCPRg]* from Mo2C0Ac]4 was attempted 

in one step by reacting stoichiometric amounts of Mo2C0Ac]4, AICI3, and 

PR3 in chlorobenzene, B-M0CI2 was obtained. This observation led to the 

synthesis of 3-M0CI2 using AICI3 to exhaustively chlorinate Mo2[0Ac]4. 

Throughout the discussion, the origin of the 3-M0CI2 will be indicated as 

was done in the Experimental section. 

The Fourier-transform infrared spectra of literature 3-M0CI2, 

M04ClgCPEt3]4, and MogCli6[PEt3]4 are presented in Figure III-l. Table 

III-l contains the frequencies of the major bands. The band at 432 cm~^ 

common to both the Mo4Clg[PEt3]4 and MogCl i5[PEt3]4 spectra probably 

arises from the phosphine ligand. This assignment is based upon the 

diminishing intensity of the band as the concentration of the phosphine in 

the three compounds decreases. The absorption at 374 cm"^ in the spectrum 

of the tetranuclear compound shifts slightly in the spectrum of the 

octanuclear compound and again in the B-M0CI2 spectrum. The infrared 

spectrum of MogClig[PEt3]4 in the region of 330 cm"^ appears to be a 

composite of Mo4Clg[PEt3]4 and &-M0CI2. Although all three spectra have 

an absorption at 330 cm"^, the band at 345 cm"^ appears only in the 
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500 450 400 350 300 250 200 150 

WAVENUMBERS (CM'') 
Figure III-l. Fourier-transform infrared spectra of: a) Mo^ClgCPEto],, 

b) MogCligCPEtg]*, c) literature g-MoClg 
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Table III-l. Infrared absorption frequencies (cm'^) below 450 cm~^ for 
Mo^ClgCPEtg]*, MogCligCPEtg]*, and literature &-M0CI2 
(s = strong, m = medium, w = weak) 

Mo^ClgCPEtg]^ MogCl i5CPEt3]4 B-M0CI2 

449 w 

432 m 

374 s 

348 m 

331 m 

306 m 

273 s 

234 w 

177 w 

140 w 

432 m 

380 s 

357 w 

345 m 

330 m 

308 s 

289 s 

256 w 

225 w 

150 m 

385 s 

354 w 

331 w 

301 s 

260 w 

161 m 

spectra of the two compounds containing phosphine and the band at 357 cm"^ 

appears only in the spectra of MogCligCPEtg]^ and B-M0CI2. The absorption 

at 289 cm"^ in the spectrum of the octanuclear compound is significantly 

broadened and shifted from the sharp absorption at 273 cm~^ in the 

spectrum of the tetranuclear compound. This trend seems to continue in 
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the e-MoCl2 spectrum. The band at 300 cm"^ in the p-MoClg spectrum is 

broad enough that it may overlap an absorption corresponding to the 

absorption that is found at about 308 cm"^ in the other two spectra. Few 

conclusions can be drawn from the infrared spectra. Since the three 

compounds contain various types of Mo-Cl bonds, the infrared spectra 

should be similar. One would expect that the Mo-Cl absorption at highest 

frequency would be due to a molybdenum-terminal chlorine stretch. The 

identity of the absorption at 385 cm'^ in the 3-M0CI2 spectrum is there­

fore puzzling. If 3-M0CI2 has a polymeric structure, the concentration of 

terminally bound chlorine atoms should be low. The x-ray photoelectron 

spectra indicate that all of the chlorine atoms are of the bridging type 

(vide infra). Therefore, assignment of the infrared absorptions of 

0-MoCl2 must wait until a better understanding of the structure is 

obtai ned. 

The three preparative methods led to products with significantly 

different stabilities to air and moisture, fhis feature suggested that 

the three products were not identical and that other methods of 

characterization should be pursued. The reflectance spectra of the three 

compounds are shown in Figure III-2. The major spectral features are the 

same; therefore, the reactivity differences are probably not due to major 

structural or compositional differences. 

The reflectance spectrum of 3-M0CI2 lacks well-defined absorption 

bands; however, the shoulders observed in the spectrum are pronounced. 

These can be compared to the bands observed in the spectra of the 

tetranuclear and octanuclear clusters (Figure III-3). There are shoulders 
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Figure II1-2. Reflectance spectra of 3-M0CI2 prepared by different 
methods; a) literature, b) reactive, and c) melt 
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Figure II1-3. Reflectance spectra of M04Clg[PEt3]4 ( ), MogCligCPEtg]/ 
and ^"44oCl2 ( —— 
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apparent in the spectrum of 8-MoCl2 at about 600, 520, and 400 nm. The 

frequencies of these absorptions show striking resemblance to the 

frequencies of the absorptions of the octanuclear cluster (Table II1-2). 

Table III-2. Reflectance absorptions (nm) for Mo^ClgCPEtg]^, 
MogCligCPEtg]^, and 3-M0CI2 

e-MoCl2 600 520 400 370 270 

M08Cli6CPEt3]4 620 520 400 275 

M04Cl8CPEt3]4 675 420 305 270 

The new absorption at 370 nm is unexplained, but the band at 270 nm 

compares favorably with the corresponding absorption in MogCligCPEtg]^. 

As the ligand field strength of L decreases in the Mo^ClgL^ compounds, a 

blue shift of bands in the visible spectra is observed (6). The earlier 

interpretation of the blue shift observed on comparing the spectrum of the 

tetranuclear cluster to that of the octanuclear cluster was based on the 

assumption that some of the trialkylphosphine ligands were replaced by 

bridging chlorine ligands which couple one cluster unit to another (7). 
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The additional blue shift observed between the spectrum of the octanuclear 

cluster and the B-MoClg spectrum can be explained by the complete 

substitution of the trialkylphosphine ligands by bridging chlorine 

ligands. The evidence from the comparison of these spectra is by no means 

conclusive, but does provide further support for the possible structural 

similarity between MoqClgCPRg]^, MogCliGCPRg]^, and 3-M0CI2. 

Gui nier x-ray powder patterns were obtained on samples of B-MoClg 

from each of the three preparative schemes. As might be expected, the 

crystallinity of the material is improved with increasing temperature of 

preparation. The powder pattern of the melt 3-M0CI2 has the same 

diffraction lines and relative intensities as literature 3-M0CI2, but the 

diffraction lines, although still broad and diffuse, are significantly 

sharper. On the other hand, the x-ray diffraction lines from reactive 

3-M0CI2 are barely discernible. 

The power of XPS to determine different environments for chlorine 

atoms is well-established (4). In light of our hypothesis that B-M0CI2 

contains tetrameric units, we believed that there might be more than the 

one type of chlorine previously suggested (4). The molybdenum 3d5y2 XPS 

data are listed in Table III-3. The binding energies and full-width at 

half-maximum height (FWHM) in this case were determined directly from a 

plot of the data and not by curve resolution. This method was reasonable 

because there was clearly only one type of molybdenum. The binding energy 

is comparable to that found in Mo^ClgCPRg]^ and MogCligCPRg]^. The FWHM 

is fairly constant among the three samples and is slightly larger than 

that found in the octanuclear cluster. The chlorine 2p3/2 XPS data for 
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Table III-3. Molybdenum Bds/g binding energies (eV) 

Compound Bi ndi ng Energy FWHM (eV) 

B-MoCl2 

Literature 

Reactive 

Melt 

229.4 

229.4 

229.3 1.68 

1.62 

1 .62 

Mo4Cl8[P(n-Bu)3]4^ 229.0 

MogCligCPEtsljf 229.2 1.50 

^Reference 13. 

b Reference 14. 

the products of all three preparative methods were collected. The 

computer program APES (15) was used to resolve the chlorine data. When 

parameters for only one type of chlorine were used to fit the data, the 

binding energies and FWHM given in Table II1-4 were determined. Although 

these data were fit fairly well, our experience would indicate that, based 

on the large FWHM, additional types of chlorine atoms were probably 

needed. 
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Based on the FWHM and values, these data are clearly fit better by 

parameters for at least two types of chlorine (Figure III-4 and Table III-

4). For the compounds synthesized by both the reactive and melt 

preparations, the spectra were resolved with two major types of chlorine 

in a one-to-one ratio. This is what is expected for a compound that 

contains tetranuclear clusters linked by bridging chlorine atoms. The 

small fraction, about 6%, of a third type of chlorine found at the highest 

binding energy in the spectrum of melt B-M0CI2 is not surprising. The 

preparation of M06CI12 from K4M02CI8 in an AICI3/KCI melt using longer 

reaction times has been reported (16). Possibly the initial steps in the 

conversion of P-MoClg to MogClig are being observed in the XPS data. The 

FWHM for resolved bands in the spectrum of the reactive 3-M0CI2 sample is 

larger than normal ; however, the generated curve provided a good match to 

the observed data. Therefore, the introduction of a third type of 

chlorine was determined to be unwarranted. 

The parameters obtained from data for the most reasonable resolutions 

are listed in Table III-5 along with results from other compounds for 

comparison. The literature 0-MOCI2 contains chlorine atoms with binding 

energies similar to the intercluster doubly-bridging and intracluster 

doubly-bridging types of chlorine found in MogCligCPEtg]^ (7). The 

differences in chlorine binding energies between the samples from the 

three preparative methods could be due to the difficulty in resolving the 

data. Since the molybdenum binding energies are, within error, the same 

for all three samples, the data are probably referenced to carbon 

correctly. 
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Table III-4, XPS parameters derived in spectra resolution of 3-M0CI2® 

One type of chlorine 

Source of &-M0CI2 

Literature 

Reactive 

Melt 

Energy^ (eV) FWHM (eV) 

199.5 

199.8 

199.8 

1.70 

1.77 

1.74 

1.32 X 10* 

1.46 X 104 

2.60 X 10^ 

Two types of chlorine 

Source of P-M0CI2 

Literature 

Reactive 

Melt 

Energy'^ (eV) Area Ratio FWHM (eV) 

199.7 199.0 

200.1 199.4 

200.5 199.7 

1.72/1.00 

1.02/1.00 

1.00/5.35 

1.44 

1.55 

1.58 

6.64 X 10% 

1.04 X 104 

1.50 X 10* 

X? 

Three types of chlorine 

Source of B-M0CI2 Energy^ (eV) Area Ratio FWHM (eV) 

Reactive 200.3 199.7 198.8 2.08/5.00/1.00 1.35 8.21 x 10% 

Melt 201.2 200.0 199.4 1.00/7.13/7.34 1.38 9.63 x 10^ 

^Spin orbit splitting was 1.60 eV. 

^Values for 2p3y2 component. 
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Figure III-4. Chlorine 2p XPS spectra of a) literature 3-MoCl«, b) melt g-MoCl^, and 
c) reactive g-MoClg 



www.manaraa.com

Table III-5. Comparison of Cl 2p3^2 XPS data of g-MoCog with other compounds^ 

Intracluster Intracluster Intercluster Terminal FWHM (eV) Area Ratio 
triply-bridgi ng doubly-bridgi ng doubly-bridgi ng 

FWHM (eV) 

Literature B-MoClg 199.7 199.0 1.44 1.72/1.00 

Reactive B-MoClg — — — 200.1 199.4 — — — 1.55 1.02/1.00 

Melt 6-W0CI2 201.2 200.0 199.4 1.38 1.00/7.13/7.34 

MogCliGCPEtsljb — - - 199.6 198.9 198.1 1.30 2.72/1.51/1.00 

MogClgCPtn-BulsJ^c 199.6 - - — 198.3 1.2d 1.3/1.0 

{Bu4N)2M05Cli3e 200.5 199.8 — 198.3 1.03d 1.00/1.00/1.33 

^Reference is the C Is binding energy (285.0 eV). 

bprom Reference 7. 

cprom Reference 6, 

^Data was obtained using monochromatic radiation. 

®From Reference 17, 
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The broad, featureless nature of the chlorine spectra admittedly 

makes the resolution difficult. The number of different types of chlorine 

atoms present was difficult to determine. The large FWHM was the major 

reason for fitting the data with multiple types of chlorine, but a 

contribution to the large FWHM may arise from the amorphous nature of 

these compounds. The molybdenum XPS'data indicate that the FWHM is larger 

than for the crystalline MogCligCPEtg]^, and therefore the FWHM for the 

chlorine atoms should be expected to be somewhat larger than normal. 

These difficulties continue into the interpretation of the ratio of peak 

areas. Therefore, the XPS data can best be summarized by saying that 

there may be two major types of bridging chlorines in roughly equivalent 

concentrations. 

The most useful information on the constitution of e-MoClg came not 

from the physical measurements but from the results of several chemical 

reactions. The conversion of 3-MoCl2 to Mo2Cl8L4 compounds (5) does not 

rule out the possibility of tetrameric units since Mo^ClgCPEtg]^ reacts 

with excess trialkylphosphine to yield Mo2Cl4[PR3]4 (6). The direct 

conversion of 3-M0CI2 to Mo4Cl8[PEt334 would certainly substantiate the 

hypothesis that tetrameric units are contained in &-M0CI2. The following 

reactions were all performed with reactive g-MoCl2 which was vacuum dried 

at room temperature. When an equal molar quantity of PEtg and g-MoCl2 

were refluxed in chlorobenzene, a deep purple solution formed within an 

hour. The insolubility of 3-MoCl2» however, created an excess of 

triethylphosphine in the solution with respect to any products of the 

3-MoCl2-triethylphosphine reaction. Therefore, if any Mo4Cl8[PEt3]4 was 
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formed, it subsequently reacted with more tri ethylphosphine to form the 

deep blue M02CI4[PEt3]4 (Eqs. 1 and 2), It was thus concluded that if the 

reaction conditions were less vigorous or the triethylphosphine 

concentration was decreased, tetranuclear clusters might be produced. 

Thus, when 0-MOCI2 was stirred at room temperature with about a 10% excess 

of PEtg in chlorobenzene for 3 days, a green filtrate was obtained. After 

the solvent was stripped from the filtrate, a cyclohexane extraction of 

the residue was used to remove the more soluble, blue M02CI 4[PEt3]4, The 

yellow, pure Mo^ClgCPEta]^ was recovered in a 32% yield. If one assumes 

that all of the observed M02CI4[PEt3]4 resulted from the reaction of 

Mo4Clg[PEt3]4 with excess PEtg, the conversion of 3-M0CI2 to Mo4Clg[PEt3]4 

actually occurred in a 47% yield. 

The reaction of 3-M0CI2 with trialkylphosphine was repeated using 

only a 5% excess of triethylphosphine and reacting for a shortened period 

of about 40 hours. Although the yield of pure tetranuclear cluster 

conpound was decreased to about 27%, the concomitant M02CI 4[PEt3]4 

formation was slashed by over one-half. In the reaction conducted with 

10% excess of triethylphosphine, 31% of the total tetranuclear compound 

formed ended up as dinuclear compound, in the latter reaction only 13%. 

4 e-MoCl2 + 4 PEt3 > M04Cl8[PEt3]4 (1) 

M04Clg[PEt3]4 + 4 PEt3 > 2 M02CI 4[PEt3]4 (2 )  
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Since dinuclear compound usually occurred as an unwanted side-product 

of the reactions performed at room temperature, the conversion of 

tetranuclear cluster compound to di nuclear compound at room temperature 

was investigated. Tri ethyl phosphi ne and Mo4Clg[PEt3]4, in a 4:1 mol 

ratio, were stirred for 45 hours in chlorobenzene. The solvent was 

stripped from the solution, and cyclohexane was again used to separate 

M02CI 4[PEt3]4 from Mo^ClgCPEtg]^. About 15% of the tetrameric cluster 

was converted to dimer, fairly consistent with the formation of 

M02CI 4[PEt3]4 observed in the reactions of 3-M0CI2 with excess 

tri alkyl phosphi ne. 

Convenient synthetic procedures for molybdenum tetrameric clusters of 

the type Mo4ClgL4 have been developed primarily with L = PR3. If reactive 

3-M0CI2 does indeed contain tetrameric units, it should be possible to 

abstract new tetrameric derivatives by reacting this form of 0-MOCI2 with 

the appropriate ligand. With this synthetic route, the isolation of 

highly reactive tetramers, that would be difficult to synthesize by other 

means, may be possible. 

The propionitrile tetrameric cluster compound, Mo4Clg[NCC2H5]4, which 

is difficult to obtain, has already demonstrated synthetic usefulness 

(6). Synthesis of the corresponding acetonitrile tetrameric compound was 

attempted by refluxing reactive B-M0CI2 in neat acetonitrile. A dark 

green solution was present after 6 hours. Because the solution color 

indicated that dinuclear compound was being formed, the reaction was 

stopped. A visible spectrum confirmed that the soluble green product was 

Mo2Cl4[MeCN]4 (18). The infrared spectrum of the insoluble yellow-brown 
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material indicated that it was unreacted 3-M0CI2. Roughly one-third of 

the starting material had reacted in 6 hours. 

None of the known Mo^ClgL^ clusters contain sulfur ligands. In an 

attempt to make this type of tetramer, a stoichiometric amount of 

tetrahydrothiophene (THT) was heated with g-MoClg in chlorobenzene. After 

2 hours no reaction was observed; therefore, the solution was brought to 

reflux. After 44 hours the reaction was stopped. The solvent had very 

little color, and the infrared spectrum of the residue matched that of 

B-M0CI2. A higher concentration of THT may facilitate this reaction. 

The reaction of MogClgCMeOH]^ with excess Et^NCl in refluxing CH2CI2 

produces a purple solid with the composition [Et4N]4Mo4Cli2 (19)* 

Therefore, we speculated that if tetrameric units are in 3-MoCl2» it may 

also react with Et^NCl. After refluxing excess Et^NCl and 3-M0CI2 in 

CH2CI2 for 2.5 days, the reaction was stopped and a purple solid was 

recovered. The removal of any excess Et^Cl in the solid was then 

accomplished by extracting with solvent distilled from the filtrate. The 

Qui nier x-ray powder pattern was identical to that of CEt4NCl]4Mo4Cli2* 

The carbon, hydrogen, and nitrogen analyses indicated a yield of 

approximately 75%; the rest of the solid is probably unreacted g-MoCl2. 

As B-M0CI2 reacts with trialkylphosphine to yield Mo4Cl8CPR3]4, 

possibly methanol also would react with g-MoCl2 to produce Mo4Clg[MeOH]4. 

This idea was tested by refluxing reactive 3-M0CI2 in 0.4 M MeOH/HCl for 

40 hours. The solution turned emerald green, but very little 0-MOCI2 

appeared to have reacted. When the methanol was removed by vacuum 

distillation, the product was purple. Both the purple solid and the 
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methanol insoluble residue had broad, featureless bands in their infrared 

spectra. Both spectra contained a band at 950 cm"^, but the region 

between 200-400 cm"^ lacked the resolution needed to distinguish 

significant changes. 

The reactivity of 0-MoCl2 is apparently promoted by maintaining a low 

temperature during its formation. The decrease in reactivity for material 

treated at high temperature is indicated by the following experiment. The 

sensitivity of reactive 3-M0CI2 to hydrogen was tested by passing hydrogen 

gas over g-MoCl2 at 250°C for 7 hours. The infrared spectrum indicated 

that the chlorobenzene absorption was lost, but otherwise the spectrum was 

unchanged. However, when this product was refluxed for 2 days in 

acetonitrile, no reaction occurred. The solution contained very little 

material and the infrared spectrum of the unreacted material indicated 

little change. This behavior is similar to that observed for literature 

0-MOCI2, which is prepared at 300°C. 

The structure of 0-MoCl2 is still unknown; however, we presently 

believe that it is a polymer of [Mo^Clg] units. The tetrameric clusters 

may be connected in only two dimensions by bridging chlorines to form a 

layered structure. The chlorobenzene found in the reactive 0-MOCI2 may be 

trapped between adjacent sheets. This would explain the vigorous 

conditions needed to completely remove the solvent. When the molybdenum 

dichloride sheets are separated by occluded chlorobenzene, reactants are 

able to penetrate the structure and reach the reactive sites, which may be 

the Mo-Cl-Mo intercluster linkages. After the chlorobenzene is removed, 

the sheets may stack tightly, preventing facile penetration of the 
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structure by the ligands. This model would entail a layer structure, but 

the layers would not be close packed as in CdCl2. Further structural 

information may be attainable using EXAFS. We are planning to participate 

in this study in the future. 
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SECTION IV. REDOX CHEMISTRY AND PHYSICAL CHARACTERIZATION OF THE 
PENTANUCLEAR ANIONS [(M05CI3)C15]"" WITH n = 1, 2, AND 3 
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INTRODUCTION 

In our continuing studies of the synthesis, reactions and properties 

of molybdenum clusters, we became interested in the pentanuclear cluster 

unit found in [Bu4N]2Mo5Cli3. Although this cluster was first prepared in 

1975 (1), very little is known about its properties and reactions (2). 

The tetragonal pyramidal cluster in [MogCligl^" can be viewed as a 

fragment of the well-known octahedral cluster anion [MogCli^]^-. Since 

the [MogCligl^" cluster has 19 metal-centered valence electrons and only 

16 electrons are required for forming 8 bonds corresponding to the 8 edges 

of the square pyramid, the question arises as to the disposition of the 

electrons and the metal-metal bond order. A rough molecular orbital 

analysis of the metal-metal bonding in [MogClialZ" with 04^ symmetry 

suggested that 14 electrons should reside in strongly bonding orbitals 

(3ai+bi+b2+e), and that the 5 remaining electrons should occupy closely 

spaced, weakly bonding or nonbonding orbital doublets in the configuration 

e^ + e% Experimental evidence concerning the electronic structure was 

thus sought in this work, along with other physical measurements needed 

for better characterization of the cluster. 
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EXPERIMENTAL SECTION 

Material s 

Spectro-grade acetonitrile was dried with CaH2 and vacuum distilled 

as needed for electrochemical work. Reagent acetonitrile, which was used 

for syntheses, and toluene were also dried with CaH2, distilled, and then 

stored over molecular sieves. Other solvents were used as received. The 

tetraalkylammonium chlorides that were used in experiments where the M05 

cluster was reduced were recrystallized from acetone by adding ether, 

vacuum dried for one day, and stored in a drybox (3). The infrared 

spectrum indicated the product was free from water. The support 

electrolyte, BU4NBF4, was prepared from Bu^NBr and HBF4 (4), 

recrystallized from acetone and ether, and vacuum dried. The magnetic 

susceptibility standard, [NH4]2[Ni(H20)5][S04]2, was prepared by 

crystallization from an aqueous solution containing equimolar amounts of 

[NH432S04 and NiS04 (5). Carbon, hydrogen and nitrogen analyses were 

performed by the Ames Laboratory Analytical Services. 

Synthesis 

[MogCligD^" 

The [MogCligD^" anion was prepared from "monomeric" M0CI2 in an 

AlClg/KCl/BiClg/Bi melt according to literature procedure (1). After 

heating the mixture at 310°C for 5 hours, the mixture was cooled, 

powdered, and stirred with 6 M HCl. The cluster species dissolved readily 
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in the acid. Several tetraalkylammoniim cations were used to precipitate 

the cluster from solution. In addition to the tetrabutylammonium salt 

(1), precipitation of the benzyltrimethylammonium (BTMA) and tetra-

ethylammonium salts occurred readily. The pyridinium salt of the cluster 

could also be isolated, but it was more soluble. The precipitated 

material was recrystallized in the air from a mixture of CH2CI2 and ether 

or acetonitrile and ethyl acetate. Identification of the products formed 

with cations other than the tetrabutylammonium cation was based on the 

visible spectra. Typical yields were 15-20%. Attempts to produce the 

cluster using K3M0CI5 (2) as the starting material resulted in lower 

yields. 

[MogCligO^" 

The [R4N]2M05C1i3 and a three-fold excess of the alkylammonium 

chloride of the cation were dissolved in acetonitrile. Excess zinc metal 

(30 mesh) was added and the solution was stirred for several hours during 

which time the solution turned color from brown to peach. The reduced 

compound was significantly less soluble in acetonitrile. For dilute 

solutions, toluene was added to precipitate the cluster. The solution was 

filtered to remove the excess tetraalkylammonium chloride leaving a 

mixture of zinc metal and the desired product. The product was separated 

from the zinc by an extraction with acetonitrile. Several cations were 

used successfully including [Bu^N]*, [BTMA]'*', and [Et^N]*. The pyridinium 

cation could not be used because zinc reduces pyridinium. Several 

attempts were made to grow crystals of the reduced cluster. When the 
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[Bu^N]* cation was used, the compound was very soluble, but the [BTMA]+ 

and [Et^N]* cations yielded a compound whose solubility was too low for 

easy crystal growth. Analysis indicated that [Bu4N]3Mo5Cl^3 crystallizes 

as the double salt [Bu^NOgMogClig'Bu^NCl. Anal. Calcd. for 

[Bu4N]3M05C1i3*BU4NC1: MO, 24.65; CI, 25.50; C, 39.50; H, 7.47; N, 

2.88. Found: C, 39.64; H, 7.50; N. 2.78; (C/N = 16.0). 

Electrochemi stry 

Electrochemistry was performed with a PAR 173/139 

Potentiostat/Coulometer and PAR 175 Programmer. Cyclic voltammograms (CV) 

were recorded on a Houston Instruments Model 2200 x-y recorder. A 

platinum disc electrode was used to measure cyclic voltammograms and a 

coil of platinum wire was used for electrolysis. Potentials are 

referenced to SCE and are uncorrected for junction potential effects. 

Acetonitrile solutions, 0.1 M BU4NBF4, were prepared by vacuum distilling 

acetonitrile into a flask containing the support electrolyte. The 

solutions were purged and blanketed with argon from which oxygen and water 

were carefully removed prior to use (Chemalog catalyst R3-11 and molecular 

sieves). No compensation was used for the residual potential drop of the 

cell. 

X-ray Photoelectron Spectra 

The instrumentation and data processing procedures have been 

described in an earlier section of this dissertation (6); however, data 

were collected using monochromatic radiation. 
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Magnetic Susceptibility 

Magnetic susceptibility data were collected on an automated Faraday 

balance constructed and maintained in this laboratory. A Cahn RH Electro-

balance was used to measure weight changes. The temperature was 

determined with a platinum resistance thermometer. Both platinum metal 

and [NH4]2Ni[H20]5[S04]2 were used to calibrate the balance. Control of 

the balance and recording of data were performed by MITS Altair 8800. 

Further details of the system will be discussed in a future paper (7). 

The sample container was machined from a Teflon rod to form a thin-

walled cylindrical bucket with a threaded cap. Lowering the bucket into 

the balance accumulated a static charge on the bucket causing it to cling 

to the side of the chamber. This problem was eliminated by lightly wiping 

the bucket with ethanol before inserting it in the balance. 

The magnetic susceptibility was measured between 100°K and room 

temperature utilizing a field gradient of 2.2 x 10^ Gauss^/cm. The 

measured susceptibility was corrected for diamagnetic contributions 

assuming atomic diamagnetic correction factors for C, H, N, and CI (8). 

Since the electrons on the metal atoms were delocalized over the cluster, 

a cluster diamagnetic factor was calculated (5) based on the core 

diamagnetism of Mo[VI] (9). This term was 67 x 10"® emu/mo1 greater than 

the sum of the atomic constants for the atoms in their appropriate 

oxidation state. Data processing was accomplished on a VAX 11/780 with a 

linear least squares program (10). The linear correlation coefficient, R, 
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was 0,9943 for the calculation of y and 0,9933 for the calculation 

of 8 for the [Bu4N]2Mo5Cli3 data. 

NMR Measurements 

NMR data were obtained on a Bruker WM-300 operating at 300 MHz. 

Measurements were made at ten degree increments between 245°K and 295°K 

and the observed shifts were corrected for variation of the solvent 

density with temperature changes (11), Samples were prepared in an air 

tight system by vacuum distilling acetonitrile and a little toluene into 

the system, dissolving all of the [Bu4N]2Mo5Cl^3 and the supporting 

electroyte, BU4NCI, then filling a capillary constructed from a melting 

point tube. This tube was sealed and the remainder of the solution was 

filtered into a second compartment containing zinc dust. After main­

taining the reducing conditions for two hours, the solution containing the 

[MogClig]^" cluster was filtered into another capillary which was then 

sealed. This method provided solutions of the 2" and 3" clusters having 

the same cluster concentration. The capillary was then centered with a 

Teflon sleeve in an NMR tube containing CD3CN and several drops of 

toluene. The data for the 3" species were collected within 3 hours after 

reduction. 

Visible Spectra 

All spectra were measured on a Gary 14 Spectrophotometer, Molar 

absorption coefficients were calculated by ratios of absorbances using 

e = 2,0 X 10^ for the 455 nm absorption of [Bu4N]2Mo5Cli3 (2) as the 
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standard. For securing the spectrum of [MogClig]^", acetonitrile was 

vacuum distilled into an air tight cell containing [Bu4N]2Mo5Cli3 and 

BU4NCI. Zinc dust was then added to the solution to reduce the cluster, 

the solution was filtered back into the cell and the spectrum was 

obtained. To obtain the spectrum of the oxidized species [MogClig]!", a 

spectroelectrochemical cell was used so that the spectrum of the 2" 

cluster could first be obtained, electrolysis to the 1" cluster 

accomplished, and its spectrum recorded without transfer of the 

solution. The oxidation potential, +1,00 V, was maintained while the 

spectrum was being recorded. 

X-ray Structure Determination 

Crystals of [BTMA]2M05Cli3 were grown by slow evaporation in the air 

of a solution of acetonitrile and ether. Subsequent work revealed that a 

mixed solvent system of acetonitrile and ethyl acetate also works very 

well. A crystal was indexed on the Ames Laboratory diffractometer (12) 

using the automatic indexing program ALICE (13). The unit cell was 

indicated to be primitive orthorhombic. Standard reflections were checked 

every 75 reflections and found not to vary significantly. The entire hkl 

octant and a portion of the -h,-k,l octant of data were collected to 50 

deg in 28, which provided a total of 11,025 reflections. After data 

reduction and averaging, 3467 reflections remained. These data were 

corrected for Lorentz and polarization effects, and an empirical 

absorption correction was carried out using diffractometer *-scan data and 
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the program ABSN (14). Other important crystallographic data are given in 

Table IV-1. 

Table VI-1. Crystal data for [CgH5CH2N(CH3)3]2M05Cli3 

mol. wt, 
color 
cry St. dimens. mm 
space group 
cell dimens.® 

a A 
b A 
c A 

cell volume, A^ 
molecules/cell 
wavelength A 
linear abs. coeff. cm" 
20 limit, deg 
obs. data [Fo>3a(Fo)] 
final residuals 

I' w . . . 
max. residual 

e" density 

1241 g/mol 
dark brown 
0.20X0.20X0.02 
Pcnb 

17.863(2) 
35.714(4) 
11.849(1) 

7559(1) 
8 
0.71034 

25.6 
42 

2691 

0.052 
0.064 , 
1.1 

®At 25°C, least-squares fit of 24 reflections with 20>23°. 

Structure Solution and Refinement 

Determination of the proper space group was very difficult. In each 

class of possible systematic extinctions there were several minor 

violations. The Patterson map (15) was also difficult to interpret 

because of the many nearly coincident Mo-Mo vectors. Several super­

position maps were created, but no additional information was obtained. 
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The MULTAN (16) package of programs requires the knowledge of the space 

group. Since the space group was not known, the programs were run in each 

of the most probable standard setting space groups. Although M05 groups 

were identified, the positional parameters did not refine properly. At 

this point, all usual methods of determination of initial atom positions 

had seemed to fail. Fortunately, a new method of Patterson map analysis 

was under development in Ames Laboratory. Portions of the computer 

program package now known as ALCAMPS (17) were used to determine the 

position of 5 molybdenum and 1 chlorine atoms. ALCAMPS interprets Marker 

vectors in Patterson and superposition maps to find a possible origin, 

then determines if the rest of the peaks in the map are consistent with 

the origin chosen. Information is also provided which aids in the 

determination of the space group. The correct space group, Pcnb, is a 

nonstandard setting of the Pbcn space group. Positional parameter 

refinement of the first 6 atoms led to an electron density map in which 

other atom positions could be identified (18). Hydrogen atom positions 

were calculated for methylene and phenyl hydrogens. The data were 

inspected and observed to have a poor fit at high 28 angle. After 

eliminating the data with sin 6/X > 0.50, 2691 reflections remained. 

Tables IV-2 and IV-3 list final atom positional and thermal parameters for 

nonhydrogen atoms. Positional parameters for hydrogen atoms are listed in 

Table IV-4, Table IV-5 contains important bonding distances and angles. 

Figure IV-1 is an ORTEP drawing of the molecule, and Figure IV-2 is a 

basal view which illustrates the distortion in the base of the cluster. 
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Table IV-2. Positional parameters [xlO^] for [BTMA32M05CIX3® 

Atom X y z U(ave)^ 

Mo(l) 
Mo (2) 
Mo(3) 
Mo (4) 
Mo (5) 

sua 
Sli! 
SI.') 
CI (7) 
CI (8) 
CI (9) 
CI (10) 
CI (11) 
CI (12) 
CI (13) 

!!!! 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
N(2) 

9176.8(9) 
10309.6(9) 
10684.2(9) 
9585.8(9) 

10509.4(9) 
10060(3) 

9030(3) 
9388(3) 
8352(3) 

11563(3) 
10482(3) 
10891(3) 

9811(3) 
8175(3) 

10795(3) 
11736(3) 

9098(3) 
11234(3) 

1765(8) 
1738(12) 

976(11) 
2216(12) 
2199(10) 
1822(11) 
2017(10) 
1646(12) 
1211(14) 
1026(12) 
1353(12) 
8131(8) 

3673.4(4) 
4105.6(5) 
3951.4(4) 
3493.6 
3406.9 
3572(1 
4322(1 
3006(1 
3743(1 
3849(1 
4589(1 
3282(1 
4021(1 
3469(1 
4509(2 
4131(1 
3078(2 
2887(1 
4944(4 
5272(5 
4804(6 
4627(6 
5049(5 
5352(6 
5729(5 
6004(5 
5887(6 
5515(7 
5254(6 
2638(4 

9162(1) 
3474(1) 
7432(1) 
7156(1) 
8850(1) 

10756(4 
9738(4) 
8600(4) 
7552(4) 
9051(4) 
8063(4) 
6882(4) 
5887(4) 

10386(1) 
10947(4) 
6245(4) 
5704(4) 
9566(5) 
3728(12) 
2891(17) 
3971(18) 
3195(17) 
4779(15) 
5504(15) 
5353(16) 
6043(21) 
6881(19) 
7079(18) 
6399(17) 
2722(13) 

33 
35 
34 
36 
31 
45 
49 
43 
43 
42 
51 
43 
44 
48 
62 
49 
61 
56 
45 
56 
58 
64 
44 
48 
45 
60 
65 
67 
60 
44 

^Estimated standard deviations are given in parentheses for the last 
significant digits. 

bu(ave) [x lo3, A^] is the average of Ugg and U33. 
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Table IV-2. (Continued) 

Atom X y z U(ave)^ 

C(ll) 7650(13) 2527(6) 1769(17) 67 
C(12) 892^10) 2705(6) 2302(19) 61 
C(13) 7808(13) 3001(5) 3219(18) 68 
C(14) 8111(11) 2364(6) 3705(17) 60 
C(15) 8475(12) 1988(5) 3478(16) 49 
C(16) 9202(11) 1905(6) 3859(15) 46 
C(17) 9510(13) 1560(7) 3703(17) 61 
C(18) 9104(13) 1290(6) 3150(15) 49 
C(19) 8412(14) 1365(5) 2759(19) 62 
C(20) 8072(11) 1703(6) 2929(18) 56 
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Thermal parameters [xlO^] for [BTMAjgMogCl 13* 

Atom Ull U22 U33 U12 Ul3 U23 

Mo(l) 37(1) 35(1) 27.7(9) -2.2(8) -0.8(8) 0.7(8) 
Mo(2) 43(1) 3 4(1) 28.3(9) -5.1(8) 1.9(8) -1.8(8) 
Mo(3) 37(1) 35(1) 29(1) -2.3(8) -2.8(8) -1.7(8) 
Mo( 4) 33(1) 45(1) 29.0(9) -5.0(8) -2.6(8) 0.7(8) 
Mo(5) 33.1(9) 31.6(9) 29.4(9) -2.3(8) -2.7(8) 0.4(8) 
Cl(l) 54(3) 50(3) 31(3) -2(3) -6(2) 3(2) 
CI (2) 49(3) 41(3) 57(3) -2(3) -1(3) 0(3) 
Cl(3) 46(3) 3 4(3) 49(3) -3(2 3(2 

liii CI (4) 43(3) 47(3) 38(3) 1(2) -3(2) liii 
Cl(5) 40(3) 47(3) 39(3) -8(2) -2(2) 0(2) 
Cl(6) 67(4) 40(3) 45(3) 1(3) 11(3) 9(3) 
Cl(7) 42(3) 49(3) 39(3) 0(2) 2(2) -9(2) 
Cl(8) 44(3) 47(3) 42(3) 0(2) -5(2) 3(2) 
Cl(9) 46(3) 57(3) 42(3) -3(3) 9(2) 6(3) 
CI (10) 80(4) 62( 4) 44(3) -10(3) -9(3) -19(3) 
CI (11) 45(3) 56(3) 45(3) -11(3) 4(2) 9(3) 
CI (12) 60(4) 72(4) 51(3) -20(3) -13(3) -17(3) 
CI (13) 51(3) 50(3) 68(4) 12(3) -13(3) 8(3) 
N(l) 57(11) 51(10) 26(9) 4(9) -17(8) 5(8) 
C(l) 73(16) 49(13) 47(14) 10(11) 0(12) 11(11) 
C(2) 37(13) 68(15) 69(16) 2(11) -8(11) -3(13) 
C(3) 83(17) 58(14) 50(14) 36(12) 16(13) -20(12) 
C(4) 61(13) 49(13) 24(11) 3(10) -1(10) -1410) 
C(5) 55(14) 57(15) 32(13) -12(11) -21(11) -19(11) 
C(6) 34(11) 47(13) 55(14) -11(11) 12(10) -16(11) 
C{7) 49(14) 41(13) 89(19) -5(12) -2 4(14) 6(14) 
C(8) 99(19) 35(14) 60(16) -20(13) 6(15) -17(12) 
C(9) 59(15) 98(20) 44(14) -15(14) 10(12) -48(15) 
C(10) 78(17) 70(16) 32(13) -23(13) 11(12) 9(12) 
N(2) 58(11) 36(10) 39(10) 17(8) -4(9) 0(8) 
C(ll) 91(18) 63(14) 47( 1 4) -2(13) -49(13) -11(13) 
C(12) 18(12) 66(15) 99(18) -9(10) 15(12) 27(14) 
C(13) 107(20) 39(13) 57(15) 38(12) -7(14) -16(11) 
C(14) 53(15) 86(17) 41(13) -19(12) 13(11) -12(13) 

^Estimated standard deviations are given in parentheses for the last 

significant digits. The anisotropic thermal parameter expression used is 

exp[-2n2(Uiih2a*2 + + UgglZc*? + ZUjghka^b* + 2Ui3hla*c* + 

2U23klb*c*)] with U's in A^, 
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Table IV-3, (Continued) 

Atom Uji U22 U33 U12 ^13 U23 

61(15) 
46(13) 

40(13) 
66(15) 

45(14) 
25(11) 

26(12) 
-8(10) 

-10(11) 
-10(11) 

C(17) 80(17) 71(17) 32(13) 11(15) -2(12) 3(13 
C(18) 84(17) 51(14) 12(10) 10(13) 6(11) 22(10) 
C(19) 97(19) 13(12) 76(17) -1(12) 0(15) 11(11) 
C(20) 42(13) 62(16) 63(15) -6(12) -3(12) 15(13) 

Table I\/-4, Hydrogen positional parameters [xlO^]^ 

Atom 

H(10) 

SKI 
H(18) 
H(19) 
H(20) 
H(4A) 
H(4B) 
H(14A) 
H(14B) 

2377 
1773 

961 
665 

1227 
9507 

10052 
9347 
8105 
7529 
2728 
2263 
7549 
8390 

5810 
6288 
6089 
5433 
4969 
2114 
1501 
1024 
1155 
1760 
5147 
4807 
2315 
2487 

4696 
5911 
7403 
7736 
6531 
4278 
3994 
3022 
2336 
2634 
4532 
5277 
3920 
4390 

®A11 hydrogen atoms were assigned isotropic U values of 

50.7 X 10-3 ^2. 
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Table IV-5, Distances (A) and angles (deg) for [BTMA]2M05C113 

Bond distances within cluster 

Mo(l 
Mo(l 
Mo(l 
Mo(2 

Cl(l 
Cl(l 
Cl(l 
Cl (3 
Cl (3 
Cl (3 

Cl (2 
Cl{2 
Cl (4 
Cl (4 

Mo(l 
Mo(2 
Mo(3 

-Mo(2 
-Mo(4 
-Mo(5 
-Mo(3 

-Mo(l 
-Mo(2 
-Mo(5 
-Mo(l 
-Mo(4 
-Mo(5 

-Mo(l 
-Mo(2 
-Mo{l 
-Mo(4 

-Cl (9 
-Cl (10) 
-Cl (11) 

2.572(2) 
2.569(2) 
2.590(2) 
2.569(2) 

2.487(5) 
2.477(5) 
2.470(5) 
2.505(5) 
2.468(5) 
2.480(5) 

2.428(5) 
2.433(5) 
2.423(5) 
2.423(5) 

2.416(5) 
2.423(6) 
2.434(5) 

Mo(2)-Mo(5 
Mo(3)-Mo(4 
Mo(3)-Mo(5 
Mo(4)-Mo(5 

Cl(5)-Mo(2 
Cl(5)-Mo(3 
Cl(5)-Mo(5 
Cl(7)-Mo(3 
Cl(7)-Mo(4 
Cl(7)-Mo(5 

Cl(6)-Mo(2 
Cl(6)-Mo(3 
Cl(8)-Mo(3 
Cl(8)-Mo(4 

Mo(4)-Cl(12) 
Mo(5)-Cl(13) 

2.627(2) 
2.575(2) 
2.588(2) 
2.617(2) 

2.471(5) 
2.505(5) 
2.467(5) 
2.505(5) 
2.473(5) 
2.470(5) 

2.424(5) 
2.425(5) 
2.428(5) 
2.443(5) 

2.433(6) 
2.418(5) 

Bond angles within cluster 

Mo(2)-Mo(l)-Mo(4 
Mo(2)-Mo(l)-Mo(5 
Mo( 4)-Mo(l)-Mo(5 
Mo(l)-Mo(2)-Mo(3 
Mo(l)-Mo(2)-Mo(5 
Mo(3)-Mo(2)-Mo(5 
Mo(2)-Mo(3)-Mo(4 
Mo(2)-Mo(3)-Mo(5 
Mo(4)-Mo(3)-Mo(5 

Mo(2)-Mo(l)-Cl(l) 
Mo(2)-Mo(l)-Cl(2) 
Mo(2)-Mo(l)-Cl(3) 
Mo(2)-Mo(l)-Cl(4) 
Mo(2)-Mo(l)-Cl(9) 
Mo(4)-Mo(l)-Cl(l) 
Mo(4)-Mo(l)-CI(2) 
Mo( 4)-Mo(l)-Cl(3) 
Mo(4)-Mo(l)-Cl(4) 
Mo(4)-Mo(l)-Cl(9) 

93.3! 
61.18(6] 
60.95(6) 
86.63(7) 
59.76(6) 
59.73(6) 
93.30(7) 
61.2 4(6) 
60.90(6) 

58.6(1) 
58.2(1) 

119.4(1) 
122.0(1) 
132.7(1) 
119.1(1) 
122.0(1) 
58.2(1) 
58.0(1) 

133.7(1) 

Mo(l)-Mo(4)-Mo(3) 
Mo(l)-Mo(4)-Mo(5) 
Mo(3)-Mo(4)-Mo(5) 
Mo(l)-Mo(5)-Mo(2) 
Mo(l)-Mo(5)-Mo(3) 
Mo(l)-Mo(5)-Mo(4) 
Mo(2)-Mo(5)-Mo(3) 
Mo(2)-Mo(5)-Mo(4) 
Mo(3)-Mo(5)-Mo(4) 

Mo(5)-Mo(3)-
Mo( 5)-Mo(3). 
Mo(5)-Mo(3). 
Mo(5)-Mo(3). 
Mo(5)-Mo(3). 
Mo(l)-Mo(4). 
Mo(1)-Mo( 4) • 
Mo(l)-Mo( 4). 
Mo(l)-Mo(4). 
Mo(l)-Mo( 4). 

Cl (7) 
Cl(8) 
Cl (11) 
Cl(3) 

•Cl (4) 
•Cl(7) 
Cl (8) 
Cl (12) 

86.97(7) 
59.93(6) 
59.80(6) 
59.06(6) 
85.85(7) 
59.12(6) 
59.03(6) 
91.03(7) 
59.30(6) 

57.9(1) 
119.2(1) 

58.0(1) 
119.4(1) 
131.8(1) 
59.6(1) 
58.0(1) 

117.8(1) 
115.1(1) 
134.8(1) 
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Table IV-5, (Continued) 

Mo 5 -Mo(l -Cl 1) 58.2 1) Mo 3 -Mo 4 -Cl 3) 118.0 
Mo 5 -Mo(l -Cl 2) 119.4 1) Mo 3 -Mo 4 -Cl 4) 115.8 
Mo 5 -Mo(l -Cl 3) 58.2 1) Mo 3 -Mo 4 -Cl 7) 59.5 
Mo 5 -Mo(l -Cl 4) 118.9 1) Mo 3 -Mo 4 -Cl 8) 57.5 
Mo 5 -Mo(l -Cl 9) 131.0 1) Mo 3 -Mo 4 -Cl 12) 138.6 
Mo 1 -Mo(2 -Cl 1) 59.0 1) Mo 5 -Mo 4 -Cl 3) 58.3 
Mo 1 -Mo(2 -Cl 2) 58.0 1) Mo 5 -Mo 4 -Cl 4) 117.9 
Mo 1 -Mo{2 -Cl 5) 117.4 1) Mo 5 -Mo 4 -Cl 7) 57.9 
Mo 1 -Mo(2 -Cl 6) 115.4 1) Mo 5 -Mo 4 -Cl 8) 117.3 
Mo 1 -Mo(2 -Cl 10) 137.9 1) Mo 5 -Mo 4 -Mo 12) 134.1 
Mo 3 -Mo(2 -Cl 1) 117.4 1) Mo 1 -Mo 5 -Cl 1) 58.8 
Mo 3 -Mo(2 -Cl 2) 115.7 1) Mo 1 -Mo 5 -Cl 3) 59.2 
Mo 3 -Mo(2 -Cl 5) 59.6 1) Mo 1 -Mo 5 -Cl 5) 116.9 
Mo 3 -Mo(2 -Cl 6) 58.0 1) Mo 1 -Mo 5 -Cl 7) 117.1 
Mo 3 -Mo(2 -Cl 10) 135.4 1) Mo 1 -Mo 5 -Cl 13) 136.4 
Mo 5 -Mo(2 -Cl 1) 57.8 1) Mo 2 -Mo 5 -Cl 1) 58.1 
Mo 5 -Mo(2 -Cl 2) 117.7 1) Mo 2 -Mo 5 -Cl 3 118.2 
Mo 5 -Mo{2 -Cl 5) 57.8 1) Mo 2 -Mo 5 -Cl 5) 57.9 
Mo 5 -Mo(2 -Cl 6) 117.7 1) Mo 2 -Mo 5 -Cl 7) 118.4 
Mo 5 -Mo(2 -Cl 10) 135.9 1) Mo 2 -Mo 5 -Cl 13) 134.7 
Mo 2 -Mo(3 -Cl 5) 58.3 1) Mo 3 -Mo 5 -Cl 1) 116.9 
Mo 2 -Mo(3 -Cl 6) 58.0 1) Mo 3 -Mo 5 -Cl 3) 117.0 
Mo 2 -Mo{3 -Cl 7) 119.2 1) Mo 3 -Mo 5 -Cl 5) 59.4 
Mo 2 -Mo{3 -Cl 8) 121.5 1) Mo 3 -Mo 5 -Cl 7) 59.3 
Mo 2 -Mo(3 -Cl 11) 133.5 1) Mo 3 -Mo 5 -Cl 13) 137.8 
Mo 4 -Mo(3 -Cl 5) 118.8 1) Mo 4 -Mo 5 -Cl 1) 117.9 
Mo 4 -Mo(3 -Cl 6) 121.5 1) Mo 4 -Mo 5 -Cl 3) 57.8 
Mo 4 -Mo(3 -Cl 7) 58.2 1) Mo 4 -Mo 5 -Cl 5) 118.7 
Mo 4 -Mo(3 -Cl 8) 58.5 1) Mo 4 -Mo 5 -Cl 7) 58.1 
Mo 4 -Mo(3 -Cl 11) 133.0 1) Mo 4 -Mo 5 -Cl 13) 134.3 

Cl 1 -Mo(l -Cl 2) 89.6 2) Cl 6 -Mo 3 -Cl 8) 92.3 
Cl 1 -Mo(l -Cl 3) 88.2 2) Cl 6 -Mo 3 -Cl 11) 92.6 
Cl 1 -Mo(l -Cl 4) 176.7 2) Cl 7 -Mo 3 -Cl 8) 89.8 
Cl 1 -Mo(l -Cl :| 88.3 2) Cl 7 -Mo 3 -Cl 11) 89.3 
Cl 2 -Mo(l -Cl :| 177.4 2) Cl 8 -Mo 3 -Cl 11) 91.9 
Cl 2 -Mo(l -Cl 4) 93.3 2) Cl 3 -Mo 4 -Cl 4) 89.7 
Cl 2 -Mo(l -Cl 9) 92.2 2) Cl 3 -Mo 4 -Cl 7) 90.6 
Cl 3 -Mo(l -Cl 4) 88.9 2) Cl 3 -Mo 4 -Cl 8) 174.1 
Cl 3 -Mo(l -Cl 9) 89.1 2) Cl 3 -Mo 4 -Cl 12) 90.5 
Cl 4 -Mo(l -Cl 9) 93.1 2) Cl 4 -Mo 4 -Cl 7) 174.6 
Cl 1 -Mo(2 -Cl 2) 89.7 2) Cl 4 -Mo 4 -Cl 8) 89.2 
Cl 1 -Mo(2 -Cl 5) 90.1 2) Cl 4 -Mo 4 -Cl 12) 92.1 
Cl 1 -Mo(2 -Cl 6) 173.8 2) Cl 7 -Mo 4 -Cl 8) 90.0 
Cl 1 -Mo{2 -Cl 10) 94.5 2) Cl 7 -Mo 4 -Cl 12) 93.4 
Cl(2)-Mo(2)-Cl{5) 174.4(2) Cl(8)-Mo(4)-Cl(12) 95.4 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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Table IV-5, (Continued) 

Cl(2 
Cl(2 
Cl(5 
Cl(5 
Cl (6 
Cl (5 
Cl 5 
Cl (5 
Cl{5 
Cl (6 

Mo(l 
Mo(l 
Mo(2 
Mo(l 
Mo(l 
Mo(l 
Mo( 4 
Mo(l 

-Mo(2). 
-Mo(2). 
-Mo(2). 
-Mo(2). 
-Mo(2). 
-Mo(3). 
-Mo( 3). 
-Mo(3)-
-Mo(3). 
-Mo(3). 

Cl(6) 
Cl (10) 
Cl (6) 
Cl (10) 
Cl (10) 
Cl(6) 
•Cl (7) 
Cl (8) 
Cl (11) 
Cl (7) 

-Cl(l)-Mo(2) 
-Cl(l)-Mo(5) 
-Cl(l)-Mo(5) 
-Cl(2)-Mo(2) 
-Cl(3)-Mo(4) 
-Cl(3)-Mo(5) 
-Cl(3)-Mo(5) 
-Cl(4)-Mo(4) 

89.0(2) Cl(l -Mo(5)-Cl(3) 89.1(2) 
93.2(2) Cl(l -Mo(5)-Cl(5) 90.4(2) 
90.6(2) Cl(l -Mo(5)-Cl(7) 175.3(2) 
92.3(2) Cl(l -Mo(5)-Cl(13) 91.7(2) 
91.6(2) Cl(3 -Mo(5)-Cl(5) 175.5(2) 
89.7(2) Cl (3 -Mo(5)-Cl(7) 90.4(2) 
88.1(2) Cl 3 -Mo(5)-Cl(13) 89.8(2) 

177.2(2) Cl (5 -Mo(5)-Cl(7) 89.8(2) 
89.9(2) Cl (5 -Mo(5)-Cl(13) 92.8(2) 

177.1(2) Cl (7 -Mo(5)-Cl(13) 92.6(2) 

62.4(1) Mo(2 -Cl(5)-Mo(3) 62.2(1) 
63.0(1 Mo(2 -Cl(5)-Mo(5 64.3(1 
64.2(1) Mo(3 -Cl(5)-Mo(5) 62.7(1) 
63.9(1) Mo(2 -Cl(6)-Mo(3) 64.0(1) 
62.2(1) Mo(3 -Cl 7)-Mo(4) 62.3(1) 
62.6(1) Mo(3 -Cl(7)-Mo(5) 62.7(1) 
63.9(1) Mo(4 -Cl(7)-Mo(5) 63.9(1) 
64.0(1) Mo(3 -Cl(8)-Mo(4) 64.0(1) 

Bond distances in cations 

N{l)-C(l) 1.54(2) N(2)-C(ll) 1.47(3) 
N(l)-C(2) 1.52(2) N(2)-C(12) 1.52(2) 
N(l)-C(3) 1.53(3) N(2)-C(13) 1.54(2) 
N(l)-C(4) 1.52(2) N(2)-C(14) 1.52(3) 
C(4)-C(5) 1.54(3) C(14)-C(15) 1.52(2) 
C(5)-C(6) 1.40(3) C(15)-C(16) 1.41(3) 
C(5)-C(10) 1.40(3) C(15)-C(20) 1.41(3) 
C(6)-C(7) 1.44(3) C(16)-C(17) 1.36(3) 
C(7)-C(8) 1.33(3) C(17)-C 18) 1.37(3) 
C(8)-C(9) 1.39(3) C(18)-C(19) 1.35(3) 
C(9)-C(10) 1.36(3) C(19)-C(20) 1.37(3) 

Atom 

Hydrogen-chlorine distances less than 3,00 A 

Distance (A) C-H-Cl Angle (deg) 

C(10)-H(10)-C1(6) 
C(6)-H(6)-C1(9) 
C(19)-H(19)-C1(11) 
C(4)-H(4B)-C1(11) 
C(14)-H{14B)-C1(12) 
C(17)-H(17)-C1(12) 
C(14)-H(14A)-C1(13) 

2.628 
2.943 
2.950 
2.835 
2.909 
2.943 
2.575 

135 
124 
152 
153 
158 
127 
172 
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Figure IV-1. Structure of [MogCliglZ" unit found in [BTMA]2Mo5Cli3. 

Thermal ellipsoids are scaled to enclose 50% of the electron 

density 
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Figure IV-2. Basal view of MogCligZ" unit found in [BTMA]2M05Cli3 
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Electron Spin Resonance 

Electron spin resonance measurements were executed with a Bruker ER 

200D-SRC instrument equipped with an Oxford ESR-900 flow-through cryostat 

and DTC-2 digital temperature controller. A Hewlett-Packard 5342A 

microwave frequency counter was used to accurately measure the 

spectrometer frequency. Calibration of the instrument with DPPH was 

accomplished before g values were measured, 

A frozen-glass spectrum of [Bu4N]2Mo5Clj^3 was obtained by adding the 

compound to toluene and adding a minimum of acetonitrile until dissolution 

occurred. The solution was then filtered into a 3 mm o.d. quartz tube and 

sealed. 

Extended HCfckel Calculations 

The program used for extended HCfckel calculations and the method of 

calculating input parameters has been described previously (19), 

Calculations were done on the [MogCligl^" cluster as it is found in 

[Bu4N]2M05C1i3 (C4y symmetry), [BTMA]2M05C113 (C^y symmetry), and 

hypothetical rectangular based pyramid of [M05Clj^3]^". The M05 unit in 

[BTMA]2Mo5C1 13 does not have any crystallographic symmetry, although it is 

very close to €2^ symmetry. Therefore, appropriate bond distances were 

averaged and an idealized C2y cluster constructed. 

The molecular orbital diagram for [MogCli^]^" was also calculated. 

An octahedron of metal atoms was used for one calculation. Another 

calculation was done with one axial Mo and its terminal CI tetragonally 
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extended by 0.2 A, This series of calculations allowed a correlation 

diagram to be drawn between the Mog and M05 clusters yielding further 

information on which orbital s were involved in the addition of a metal 

atom to complete the M05 cluster. 

Data from Table 6 of Cusachs and Corrington's work (20) were also 

used in one calculation for [MogCli^]^". These zeta exponents grouped the 

three highest occupied t levels extremely close together so that they were 

essentially equivalent. Since zeta exponents from Table 4 of reference 

(20) gave better agreement to previous molecular orbital calculations on 

the [MogXig]^- cluster, they were used for the [MogCligl^- calculations. 

Atomic coordinates and final atomic charges for all calculations are given 

i n Tabl e IV-6, 

Table IV-6. Parameters used in extended Hù'ckel calculation® 

[Bu4N]2M05C1I3 

Atom X y z final charge 

Mo(b) 
Mo(a) 
Cl(t) 
Cl(t) 
Cl(db) 
Cl(db) 
Cl(tb) 
Cl(tb) 

1.282 
0.000 
3.005 
0.000 
2.422 
0.000 
2.459 
0.000 

1.282 
0.000 
3.005 
0.000 
0.000 
2.422 
0.000 
2.459 

0.000 
1.861 
0.011 
4.274 

-1.714 
-1.714 
1.771 
1.771 

0.22 
0.22 

-0.37 
-0.37 
-0 .21 
-0.19 
-0.11 
-0.12 

®Atom types are designated as follows; b, basal; a, apical; t, 
terminal; db, doubly bridging; tb, triply bridging. 
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Table IV-6. (Continued) 

CBTMA]2M05C1I3 

Atom 

Mo(b) 
Mo(b) 
Mo(a) 
Cl (t) 
Cl (t) 
Cl (t) 
Cl(db) 
Cl (tb) 

Atom 

Mo(b) 
Mo (a) 
Cl (t) 
Cl (t) 
Cl db) 
Cl(db) 
Cl (tb) 
Cl (tb) 

[MogCli^] 

Atom 

Mo 
Mo. 
Mo^ 

si'-l 
Cl (t)b 
Cl (tb) 
Cl(tb) 
Cl (tb) 
Cl (tb) 

2-

X y z final charge 

0.000 1.763 0.000 0.23 
1.870 0.000 0.000 0.21 
0.000 0.000 1.867 0.22 
4.297 0.000 0.043 -0.38 
0.000 4.190 0.043 -0.37 
0.000 0.000 4.284 -0.38 
1.756 1.705 -1.700 -0.20 
1.739 1.753 1.767 -0.11 

amid of [MogClig]^" 

X y z final charge 

1.302 1.282 0.000 0.22 
0.000 O.OOQ 1.861 0.22 
3.005 3.005 0.011 -0.38 
0.000 0.000 4.274 -0.38 
2.422 0.000 -1.714 -0.19 
0.000 2.422 -1.714 -0.19 
2.459 0.000 1.771 -0.10 
0.000 2.459 1.771 -0.11 

X y z final charge 

1.305 1.305 0.000 0.21 
0.000 0.000 1.846 0.20 
0.000 0.000 -1.846 0.20 
3.042 3.042 0.000 -0.39 
0.000 0.000 4.302 -0.39 
0.000 0.000 -4.302 -0.39 
2.472 0.000 1.748 -0.11 
0.000 -2.472 1.748 -0.11 
2.472 0.000 -1.748 -0.11 
0.000 -2.471 -1.748 -0.10 

For the distorted [MogCli^jZ" cluster, these parameters were: 
Mo; X 0.000; y 0,000; z -2.046; charge 0.19 
CI: X 0.000; y 0.000; z -4.502; charge -0.39; 

all other parameters were the same. 
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RESULTS AND DISCUSSION 

Cyclic Voltammetry 

Cyclic voltammetry is a powerful tool for the investigation of 

multiple oxidation states. Since the highest occupied molecular orbital 

(HOMO) appears to be approximately nonbonding, we felt this cluster should 

have other accessible oxidation states. The cyclic voltammogram (Figure 

IV-3) clearly indicates both a reduction and an oxidation of the cluster 

can occur. A steady-state cyclic voltammogram was achieved for both 

processes within 3 cycles. The lack of an oxidation potential 

corresponding to that for CI" indicates that there is little dissociation 

of chlorine. The cyclic voltammogram of [MogCli*]^- also indicated no 

chlorine dissociation (21). 

The reduction of the cluster occurred at ^\j2, = -0.15 V. The ratio 

of the current peak for the forward and reverse sweeps was 1.00 and did 

not vary with scan rate. Peak separation was also investigated as a 

function of scan rate and found to vary from 70 mV at 20 mV/sec to 170 mV 

at 200 mV/sec. Because of rapid attainment of the steady-state shape and 

no other indications of irreversibility, the peak separation dependence on 

sweep rate is probably a result of uncompensated resistance usually found 

when working in organic solvents (22). We thus believe the reduction is a 

one electron reversible process. 

The oxidation process, which has Eyg = +0.77 V, may not be as 

reversible as the reduction process. Although the steady-state shape of 

the CV is reached quickly, the peak current ratio is no longer unity and 
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Figure IV-3. Cyclic voltammogram of [Bu^Nj^MOgCli" acetonitrile 
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varies slightly with scan rate. At a slow scan rate, peak to peak time of 

66 seconds, the Ipf/Ipr ratio is 0.87. When the peak to peak time 

separation is decreased to 7 seconds, the Ipf/Ipp ratio increases to 

0.93. Peak separation was found to vary from 100 mV at 20 mV/sec to 225 

mV at 200 mV/sec. Oxidation of the cluster appears to involve one 

electron and should be considered to be quasi-reversible. 

Electrolysis of an acetonitrile solution at -0.50 V resulted in a 

noticeable color change from brown to orange-brown. The solution color 

was also much less intense. The cyclic voltammogram of the resulting 

solution contained a wave for the oxidation back to the 2" cluster. The 

further oxidation step was not clean. Another reaction appears to be 

occurring at a potential slightly more positive than the cluster oxidation 

potential. 

It is also possible to produce [MosClig]^- by reduction with zinc 

powder. The CV of a solution containing the cluster reduced with zinc was 

considerably more complex than the solution of the reduced cluster formed 

by electrolytic reduction. Reversible, one-electron oxidations were 

observed at -0.15 and +0.08 V (Figure IV-4a). Two additional oxidations 

at about +0.7 to +0.9 V were also apparent. Resolution of this region 

into its components was not possible. The oxidation that occurred at 

+0.08 V suggested that a chemical reaction may have occurred, possibly 

changing the cluster slightly. We thought that it was likely that Zn?* 

was abstracting chlorine from the cluster. This hypothesis was tested by 

conducting the zinc reduction in the presence of excess dry Bu^NCl. The 

CV of this solution indicated only one oxidation at the potential expected 
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Figure IV-4. Cyclic voltammogram of cluster after zinc reduction 
a) without excess CI", b) with excess CI" 
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for an oxidation of the 3' cluster to the 2" cluster (Figure IV-4b). 

Further oxidation to the 1" cluster was obscured by oxidation of the 

excess chloride anion. 

Electrolysis at +1.00 V changed the color of the solution to a deep 

purple. The CV of the purple solution contained the reductions back to 

the 2" and 3" clusters. Another irreversible reduction was visible at 

about -0.9 V and was probably due to decomposition products. After about 

15 minutes, the color of the electrolyzed solution was obviously returning 

to the brown color of the 2" cluster. 

Visible Spectra 

The visible spectrum of [MogClig]^" (Figure IV-5) revealed that in 

addition to the two absorptions previously reported (2), there is also an 

absorption in the near infrared region which extends to 1100 nm. No other 

cluster absorptions were observed in the region 700 to 1500 nm. 

Reduction of the 2" cluster with zinc occurs readily. The solution 

changes color slightly, but most notable is the decrease in intensity of 

the color. This is demonstrated in the molar absorptivity coefficients of 

the new species (Table IV-7). If the solution was carefully prepared and 

protected from air and moisture, the reduced compound was stable. A 

spectrum run one day after the preparation showed no change. 

The reversibility of the reduction was demonstrated by exposing a 

carefully prepared, filtered acetonitrile solution of [MogCli]]^" to the 

air overnight. A spectrum of [MosClig]^" had been recorded before 

reduction. After the solution containing the 3" cluster was exposed to 
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Figure IV-5. Visible spectra of [MOgCl^g]""; n = 1 (—), n = 2 ( ), n = 3 (-•-) 
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Table IV-7. Electronic absorption data for [M05CI13]"" 

1- 2" 3-

X( nm) e( A/mole-cm) X(nm) e( «/mole-cm) x( nm) e( a/mole-cm) 

745 1.3 X 103 725 7.2 X 10% 790 1.0 X 10^ 

560 1.1 X 103 550 1.0 X 10^ 580 2.8 X 102 

490 1.5 X 103 455 2.0 X 10^ 485 9.3 X 102 

air, the absorption occurred at the proper wavelengths for the 2" cluster 

and with at least 90% of their original absorbance. 

The dark brown solution of [MogCligl^" changed to a dark purple upon 

electrolytic oxidation. If the potential was removed after the oxidation 

was complete, the solution began to turn brown very quickly. Therefore, 

the spectrum was recorded with the potential applied. 

The method used to determine absorption coefficients assumes that the 

concentrations of the old and new species are identical. Although we are 

confident that this is true for the reduced species, there is some doubt 

in the case of the oxidized species. Since decomposition occurs quickly, 

there may have been decomposition during the electrolysis. Tliis would 

lead to actual absorptivities greater than those reported in Table IV-7. 

Not all of the decomposition products have been identified, but after 

2 1/2 hours, the solution color is stable and the spectrum is that of 

[MogClig]^". The absorbance is about 3/4 of the initial value. This 
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leads us to believe that a disproportionation of the 1" species is 

occurring. 

The spectra show little change in band positions as the oxidation 

state varies. If one of the absorptions observed in the spectra of the 2" 

and 3" species was not present in the spectrum of the 1" species, one 

could assume that transition would be from the HOMO. Since this is not 

observed, the transitions must be from lower lying orbitals. 

Magnetic Properties 

A plot of _ys_ 1/T for [Bu4N]2Mo5Cl^3 (Figure IV-6) reveals that 

the susceptibility follows typical Curie-Weiss behavior. These data 

corresponded very well with a line whose equation was: = 

[0.347(3)][1/T] + 2.12(2) x 10"^ cm^/mol. The magnetic moment was found 

to be 1.67(1), and the Weiss constant was -14(2)°K. The temperature 

independent paramagnetism was 208(23) x 10"® cm^/mol. 

The simple MO calculation indicated that the two doubly degenerate, 

highest occupied molecular orbitals are both essentially nonbonding and 

may have about the same energy. The spin-orbit coupling for these 

orbitals could be different, thereby leading to different susceptibilities 

for the different orbitals. The observed susceptibility would be the sum 

of the ground state susceptibility and the susceptibility of the thermally 

excited state, weighted by a Boltzmann distribution. If the 

susceptibility of the energy levels is sufficiently different and thermal 

population of the higher energy level occurs, an exponential temperature 
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Figure IV-6. Magnetic susceptibility of [Bu.N]pMo_Cl.q. Line of best fit is given by line 
through data points 
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dependence of the susceptibflity would be observed. Within the 

temperature range investigated, this is not observed. 

The electron spin resonance measurements of [Bu4N]2Mo5Cl13 were at 

first very perplexing. At room temperature no signal was initially 

observed. As the sample temperature was decreased, a signal which 

increased in strength was observed. At 5°K an anisotropic ground state 

signal was observed in the spectrum of powdered [Bu4N]2Mo5Cl 13 (Figure IV-

7). As the temperature was increased, the signal became nearly isotropic 

due to motional narrowing, a process which continues to affect the signal 

to about 140°K, The motional narrowing phenomenon at low temperatures is 

indicative of a dynamic Jahn-Teller process (23,24). Above 140°K, the 

isotropic signal begins to broaden and decrease in intensity until at room 

temperature the signal was over 850 G wide. This signal broadening is 

probably due to a short relaxation time caused by spin-lattice relaxation 

(25,26). 

The solution spectrum of [Bu4N]2Mo5Cl 13 was broad and weak at room 

temperature. A very small amount of impurity with g = 1.948 was observed, 

but no hyperfine signals were evident. The narrow signal width and g 

value suggest that the impurity might be [MoOClg]^- (27). The glass 

spectrum was obtained at 50°K (Figure IV-8) and g values of g,j = 2.003 and 

g^ = 1.954 were obtained. Several additive accumulations of the spectrum 

enhanced the hyperfine signals. The signal strength of [MoOClg]^" does 

not vary appreciably with temperature (28); therefore, the observed 

hyperfine signal probably arises from the [MogCligJ^" cluster. The 

interpretation of the hyperfine data would be very complex. 
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Figure IV-7. ESR powder spectrum of [BUgNjgMOgCl^g 
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Figure IV-8. ESR glass spectrum of [Bu^NjgMOgClin toluene/acetonitrile 
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Table IV-8 contains the calculated abundance of clusters containing from 

zero to five molybdenum nuclei of spin 5/2. The ^^Mo and ^^Mo were 

considered to be indistinguishable and all five molybdenums were 

considered to be equivalent for ease of calculations of abundance. 

Apparently, a significant portion of the cluster will have a total spin of 

5. Due to the noncubic symmetry of the molecule, there will also be 

parallel and perpendicular components of the hyperfine transitions. This 

would probably generate overlapping lines making it more difficult to 

assign absorptions in the spectrum. The separation between hyperfine 

lines varies between 24 G and 70 G. Very little work has been reported on 

poly nuclear molybdenum compounds; however, hyperfine separations in 

di nuclear molybdenum compounds have been reported to be between about 20 

and 50 G (29). Therefore, the separations observed for [MogClig]^- appear 

to be of the correct magnitude. 

Table IV-8. Abundance of clusters containing M05/2 nuclei 

Number spin 5/2 Number spin 0 total spin % abundance 
nuclei nuclei 

0 5 0 23.4 
1 4 5/2 39.5 
2 3 5 26.6 
3 2 15/2 8.9 
4 1 10 1.5 
5 0 25/2 0.1 
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Below 20°K, the ESR signals in the spectrum of the glass began to 

broaden. As the ESR studies were being concluded, the cause for the 

signal broadening was determined to be power saturation of the sample. 

Above 20°K, a power level of 20 milliwatts was utilized. Between 10 and 

15°K, the instrument would not tune properly and the signal began to 

broaden. If the power was reduced, the signal would sharpen. This 

indicates power saturation is possible at low temperature. At 5°K, the 

power had to be reduced to 2 x 10"^ milliwatts to avoid saturation. 

Structure and ESR of [BTMA]2Mo5Cli3 

If the [MosClig]^" cluster is undergoing Jahn-Teller distortion, we 

wondered why there was no sign of the distortion in the crystal structure 

of [Bu4N]2Mo5C1i3. The cluster was crystallized with the BTMA cation to 

see if the cluster consistently contained a square pyramid of Mo atoms. 

All of the metal and chlorine atoms were crystal 1 ographically independent 

in this new compound. The metal-metal distances within the base were 

equal, within error; however, the metal-metal-metal angles in the base 

were no longer 90 degrees. Two of the angles average 93,3 deg, and the 

other two average 86,8 degrees. The rhombic distortion could be due to 

either the electronic structure of the cluster, or crystal packing. 

Inspection of distances between the cation and the cluster revealed that 

several of the calculated hydrogen positions were very close to chlorine 

atoms of the cluster (Table IV-5), The sum of the van der Waal s radii for 

hydrogen and chlorine is 3,00 A; therefore, ar\y hydrogen-chlorine distance 

less than 3,00 A with a carbon-hydrogen-chlorine angle greater than 90 
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degrees suggests that hydrogen bonding may be occurring (30), At this 

point, crystal packing appeared to be causing the distortion of the metal 

framework. The angles involving basal terminal chlorine atoms might be 

expected to deviate further from 90 degrees than the basal metal angles if 

crystal packing is the dominate force. Actually, the C1(9)-C1(10)-C1(11) 

and C1(11)-C1(12)-C1(9) angles average 88.5 deg, and the C1{12)-C1(9)-

Cl(lO) and C1(10)-C1(11)-C1(12) angles average 91.5 deg, a smaller 

distortion than is observed within the metal framework. 

The ESR spectrum of this compound also has a pronounced temperature 

dependence. At room temperature, however, the peak width is only 400 G. 

This nearly isotropic signal sharpens much more quickly than observed for 

[Bu4N]2M05C1i3. The anisotropic signal is also observed at a higher 

temperature. An accurate g,, value is difficult to obtain from the powder 

spectrum due to its closeness to the gj_ value; however, the g^ is about 

1.98 and gj_ is about 1.96. Although the powder spectra are different from 

the spectra of [Bu4N]2Mo5Cli3, the glass spectrum is identical to that 

obtained for [Bu4N]2Mo5Cl^3. 

Magnetic Properties of [MogClig^^" 

Information concerning the magnetic properties of the 3" cluster 

would clarify the molecular orbital picture considerably. If the HOMO is 

doubly degenerate, the 3" species should have two unpaired electrons. The 

Evans method (31) of determining magnetic susceptibility in solutions was 

well suited to the small amount of the cluster available. The shift of 

the acetonitrile, toluene methyl, and toluene aromatic protons were 
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measured. The shift was larger for acetonitrile than toluene, but the 

temperature dependence was the same. In both the solutions of 2" and 3" 

clusters, the observed shift was about three times that expected for a 

shift due solely to the solution susceptibility change. The temperature 

dependence of the shift was linear for the 2" cluster; however, the shift 

decreased with decreasing temperature rather than increasing. The shift 

of the solution containing the 3" cluster also decreased with decreasing 

temperature but does not appear to be linear. Since the shift of the 

reduced cluster solution is larger than that for the 2" solution and since 

the temperature dependence is different, we believed that the shift was 

due to the reduced species. The magnitude of the shift indicated that an 

interaction such as contact shift or dipolar shift may be occurring 

(32). These shifts can exist only for a paramagnetic compound. 

Therefore, the NMR measurements indicated that the reduced cluster should 

have two unpaired electrons. 

After the synthesis of [Bu^NDgMogClig was perfected so that a solid 

product could be isolated, the magnetic susceptibility was measured on a 

Faraday balance. The compound was diamagnetic over the temperature range 

of 100°K to room temperature. The magnetic moment of 0.4(2) was 

calculated from the slope of a line of best fit through the data. The 

temperature independent paramagnetism was 370(56) x 10"® cm^/mol. 

Extended Hffckel Results 

The diamagnetic nature of [Bu4N]3Mo5Cli3 made us ask if the 

simplistic molecular orbital diagram determination of a doubly degenerate 
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HOMO was correct, although the ESR results certainly supported this 

interpretation. The extended Hffckel calculation of [MogCli^]^" was done 

first to provide results that could be compared with previous work. In 

general, the resultant molecular orbital diagram, a portion of which is 

shown in Figure IV-9a, agrees with work done by Guggenberger and Sleight 

(33). The calculation presented here orders the three highest occupied 

triply degenerate orbital s differently and has them more closely spaced. 

This may be due to the larger 4d orbital exponent that was used. The 

energy level separation has been shown to decrease with increasing orbital 

exponent, and the energy level ordering also changes (33). The calculated 

molecular orbital diagrams for the M05 clusters may also have the energy 

levels too closely spaced. The diagram in Figure IV-9b illustrates the 

movement of the energy levels in the transformation of an [MogCli^]^-

cluster to the [MogClig]^" cluster (Figure IV-9c). As expected, the HOMO 

and lowest unoccupied molecular orbital (LUMO), which are composed mainly 

of atomic orbital s from the basal atoms of the M05 pyramid, are strongly 

involved in the bonding to the sixth position of the octahedron in 

[MogCli^]^". 

There are two vibrational modes that will break the degeneracy of an 

e level in symmetry (34). One mode corresponds to an elongation of 

the square base of the pyramid so that the base becomes a rectangle. The 

other mode is a rhombic distortion, as is observed in the crystal 

structure of CBTMA]2Mo5C1 13. The effect on the energy levels of creating 

a rectangular based pyramid is shown in Figure IV-IO. The width of the 

base was not changed, but the length of the base in the x direction was 
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increased by 0.04 A. The standard deviation of the basal Mo-Mo distance 

in [Bu4N]2Mo5C1 13 is 0.003 A; so an increase of 0,04 A in a metal-metal 

bond seemed rather significant. This distortion does remove the 

degeneracy from the HOMO, but the energy gap between the resultant 

orbitals is very small. A rhombic distortion of the base so that the 

angles within the base are 93 deg and 87 deg leads to a molecular orbital 

diagram as shown in Figure IV-llb. Although this distortion has a larger 

effect on the molecular orbital diagram, the energy separation between the 

resultant HOMO and LUMO was calculated to be less than 0.1 eV. 

Explanation of the magnetic properties of [MogCligl^" is still 

difficult. The ESR spectra of the [MosClial^" cluster support the 

calculated doubly degenerate HOMO for the undistorted cluster. The 

calculations also suggest that the energy gained from a distortion of the 

molecule would be fairly small. It is difficult to determine if the 

energ/ gained from distortion is larger than that needed to pair 

electrons. Since the magnetic susceptibility indicated the cluster is 

diamagnetic, one would predict that a cluster distortion must have 

occurred. A crystal structure of the [MogClig]^" cluster is needed to 

resolve the problem. The metal-metal bond lengths in the reduced cluster 

might also shed light on the amount of bonding character of the HOMO. 

Chlorine 2p Photoelectron Spectrum 

Terminal chlorines can be discerned from triply bridging chlorines 

in the XPS data of derivatives of [MogCli^]^" (35). Doubly bridging 

chlorines can also be distinguished from terminal chlorine (36). The 
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[MogClig]^" cluster provides a unique example of a compound containing 

terminal, doubly bridging, and triply bridging chlorine atoms. The first 

attempt to resolve the CI 2p XPS data was done using just two types of 

chlorine atoms. This led to a full-width at half-maximum (FWHM) for the 

bands arising from the bridging chlorine atoms that was larger than was 

acceptable. Further resolution was done with parameters for three types 

of chlorine atoms. The position and height of each peak was varied, and 

the FWHM was also varied, but was the same for all chlorine atom types. 

The parameters for the best resolution (see Figure IV-12) are in Table IV-

9, along with the resolution data of other comparable compounds. The area 

Table IV-9. Chlorine 2p XPS data 

CI 2p3y2 binding energies (eV)* 

Compou nd Triple Double Ter mi nal FWHM (eV) Reference 

(Bu4N)2M05C1i3 200.5 199.8 198.3 1.03 This work 

(BU4N)2M06C1i4 200.4 — 198.2 1.14 35 

M04C18(PBU3)4 — 199.6 198.3 1.2 36 

^Reference is the CI s binding energy (285.0 eV). 
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ratio of triply bridging/doubly bridging/terminal chlorine atoms is 

1.00/1,00/1.33. This is in good agreement with the anticipated ratio of 

1.00/1.00/1,25. A calculated spectrum using the correct ratios of 

chlorine types also provided a good match to the data. 

The binding energies agree very well, for both the triply bridging 

and terminal chlorines, with previous work on other compounds. The doubly 

bridging binding energy also agrees, within the error limits, to previous 

work. This experiment indicates that triply and doubly bridging chlorines 

are resolvable in XPS data even though they are separated by only 0,7 eV. 
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SUMMARY 

The crystal structure and molecular orbital calculation of the 

Mo^ClgCPRg]^. cluster demonstrate the presence of multiple metal-metal 

bonds in the cluster. This electron density reservoir should provide the 

capability of addition reactions. Future attempts to add metal atoms to 

the cluster should be attempted with molecules that will not scavenge 

phosphine from the cluster. 

With careful synthetic procedures, the isolation of MogCligCPBug]^ 

may be possible. This compound may have sufficient solubility for FAB 

mass spectrometry data to be obtained. Crystal growth may also be 

possible. If a crystalline derivative of MogCligCPRg]^ cannot be 

obtained, confirmation of the proposed structure may be attainable with 

EXAFS. This technique would also yield enlightening information on the 

B-M0CI2 structure. 

The doubly degenerate highest occupied molecular orbital in 

[MosClig]^" leads to either dynamic Oahn-Teller distortion as observed in 

[Bu4N]2M05C1 13 or a static distortion as found in [BTMADgMosCl13. Future 

work on the [Mo5Cl]^3]"' system must include the crystal structure 

determination for a salt of [MogCli3]3". A more detailed investigation of 

the temperature dependence of the [Mo5Cli3]^" ESR signal would produce 

additional information on energy level separation. Power saturation ESR 

studies would also provide information on relaxation times. 
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